Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1528–1539. doi: 10.1016/S0006-3495(99)77000-1

Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles.

C Franzini-Armstrong 1, F Protasi 1, V Ramesh 1
PMCID: PMC1300440  PMID: 10465763

Abstract

Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").

Full Text

The Full Text of this article is available as a PDF (533.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. A., Manring A., Sommer J. R., Johnson E. A. Cardiac muscle: an attempt to relate structure to function. J Mol Cell Cardiol. 1976 Feb;8(2):123–143. doi: 10.1016/0022-2828(76)90025-0. [DOI] [PubMed] [Google Scholar]
  2. Appelt D., Buenviaje B., Champ C., Franzini-Armstrong C. Quantitation of 'junctional feet' content in two types of muscle fiber from hind limb muscles of the rat. Tissue Cell. 1989;21(5):783–794. doi: 10.1016/0040-8166(89)90087-6. [DOI] [PubMed] [Google Scholar]
  3. Appelt D., Shen V., Franzini-Armstrong C. Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau. J Muscle Res Cell Motil. 1991 Dec;12(6):543–552. doi: 10.1007/BF01738442. [DOI] [PubMed] [Google Scholar]
  4. Blatter L. A., Hüser J., Ríos E. Sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks in cardiac muscle. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4176–4181. doi: 10.1073/pnas.94.8.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cannell M. B., Cheng H., Lederer W. J. The control of calcium release in heart muscle. Science. 1995 May 19;268(5213):1045–1049. doi: 10.1126/science.7754384. [DOI] [PubMed] [Google Scholar]
  7. Carl S. L., Felix K., Caswell A. H., Brandt N. R., Ball W. J., Jr, Vaghy P. L., Meissner G., Ferguson D. G. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995 May;129(3):673–682. doi: 10.1083/jcb.129.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng H., Cannell M. B., Lederer W. J. Partial inhibition of Ca2+ current by methoxyverapamil (D600) reveals spatial nonuniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Circ Res. 1995 Feb;76(2):236–241. doi: 10.1161/01.res.76.2.236. [DOI] [PubMed] [Google Scholar]
  9. Cheng H., Lederer M. R., Lederer W. J., Cannell M. B. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol. 1996 Jan;270(1 Pt 1):C148–C159. doi: 10.1152/ajpcell.1996.270.1.C148. [DOI] [PubMed] [Google Scholar]
  10. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  11. Cleemann L., Wang W., Morad M. Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10984–10989. doi: 10.1073/pnas.95.18.10984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Costantin L. L., Podolsky R. J., Tice L. W. Calcium activation of frog slow muscle fibres. J Physiol. 1967 Jan;188(2):261–271. doi: 10.1113/jphysiol.1967.sp008137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cullen M. J., Hollingworth S., Marshall M. W. A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles. J Anat. 1984 Mar;138(Pt 2):297–308. [PMC free article] [PubMed] [Google Scholar]
  14. Dolber P. C., Sommer J. R. Corbular sarcoplasmic reticulum of rabbit cardiac muscle. J Ultrastruct Res. 1984 May;87(2):190–196. doi: 10.1016/s0022-5320(84)80078-7. [DOI] [PubMed] [Google Scholar]
  15. Dulhunty A. F. Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation-contraction coupling. J Membr Biol. 1989 Jul;109(1):73–83. doi: 10.1007/BF01870792. [DOI] [PubMed] [Google Scholar]
  16. Dulhunty A. F. Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres. J Muscle Res Cell Motil. 1984 Jun;5(3):333–347. doi: 10.1007/BF00713111. [DOI] [PubMed] [Google Scholar]
  17. Dulhunty A. F., Junankar P. R., Stanhope C. Extra-junctional ryanodine receptors in the terminal cisternae of mammalian skeletal muscle fibres. Proc Biol Sci. 1992 Jan 22;247(1318):69–75. doi: 10.1098/rspb.1992.0010. [DOI] [PubMed] [Google Scholar]
  18. Escobar A. L., Monck J. R., Fernandez J. M., Vergara J. L. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature. 1994 Feb 24;367(6465):739–741. doi: 10.1038/367739a0. [DOI] [PubMed] [Google Scholar]
  19. Forbes M. S., Hawkey L. A., Jirge S. K., Sperelakis N. The sarcoplasmic reticulum of mouse heart: its divisions, configurations, and distribution. J Ultrastruct Res. 1985 Oct-Nov;93(1-2):1–16. doi: 10.1016/0889-1605(85)90080-1. [DOI] [PubMed] [Google Scholar]
  20. Forbes M. S., Hawkey L. A., Sperelakis N. The transverse-axial tubular system (TATS) of mouse myocardium: its morphology in the developing and adult animal. Am J Anat. 1984 Jun;170(2):143–162. doi: 10.1002/aja.1001700203. [DOI] [PubMed] [Google Scholar]
  21. Forbes M. S., Mock O. B., Van Niel E. E. Ultrastructure of the myocardium of the least shrew, Cryptotis parva Say. Anat Rec. 1990 Jan;226(1):57–70. doi: 10.1002/ar.1092260108. [DOI] [PubMed] [Google Scholar]
  22. Forbes M. S., Sperelakis N. Membrane systems in skeletal muscle of the lizard Anolis carolinensis. J Ultrastruct Res. 1980 Nov;73(2):245–261. doi: 10.1016/s0022-5320(80)90127-6. [DOI] [PubMed] [Google Scholar]
  23. Forbes M. S., van Neil E. E. Membrane systems of guinea pig myocardium: ultrastructure and morphometric studies. Anat Rec. 1988 Dec;222(4):362–379. doi: 10.1002/ar.1092220409. [DOI] [PubMed] [Google Scholar]
  24. Franzini-Armstrong C., Ferguson D. G., Champ C. Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J Muscle Res Cell Motil. 1988 Oct;9(5):403–414. doi: 10.1007/BF01774067. [DOI] [PubMed] [Google Scholar]
  25. Franzini-Armstrong C., Gilly W. F., Aladjem E., Appelt D. Golgi stain identifies three types of fibres in fish muscle. J Muscle Res Cell Motil. 1987 Oct;8(5):418–427. doi: 10.1007/BF01578431. [DOI] [PubMed] [Google Scholar]
  26. Franzini-Armstrong C., Jorgensen A. O. Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol. 1994;56:509–534. doi: 10.1146/annurev.ph.56.030194.002453. [DOI] [PubMed] [Google Scholar]
  27. Franzini-Armstrong C., Peachey L. D. A modified Golgi black reaction method for light and electron microscopy. J Histochem Cytochem. 1982 Feb;30(2):99–105. doi: 10.1177/30.2.6174563. [DOI] [PubMed] [Google Scholar]
  28. Franzini-Armstrong C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J Cell Biol. 1973 Jan;56(1):120–128. doi: 10.1083/jcb.56.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gilly W. F., Aladjem E. Physiological properties of three muscle fibre types controlling dorsal fin movements in a flatfish, Citharichthys sordidus. J Muscle Res Cell Motil. 1987 Oct;8(5):407–417. doi: 10.1007/BF01578430. [DOI] [PubMed] [Google Scholar]
  30. Gilly W. F., Hui C. S. Mechanical activation in slow and twitch skeletal muscle fibres of the frog. J Physiol. 1980 Apr;301:137–156. doi: 10.1113/jphysiol.1980.sp013195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jewett P. H., Leonard S. D., Sommer J. R. Chicken cardiac muscle: its elusive extended junctional sarcoplasmic reticulum and sarcoplasmic reticulum fenestrations. J Cell Biol. 1973 Feb;56(2):595–600. doi: 10.1083/jcb.56.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jong D. S., Pape P. C., Baylor S. M., Chandler W. K. Calcium inactivation of calcium release in frog cut muscle fibers that contain millimolar EGTA or Fura-2. J Gen Physiol. 1995 Aug;106(2):337–388. doi: 10.1085/jgp.106.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Junker J., Sommer J. R., Sar M., Meissner G. Extended junctional sarcoplasmic reticulum of avian cardiac muscle contains functional ryanodine receptors. J Biol Chem. 1994 Jan 21;269(3):1627–1634. [PubMed] [Google Scholar]
  35. Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
  36. Lipp P., Niggli E. A hierarchical concept of cellular and subcellular Ca(2+)-signalling. Prog Biophys Mol Biol. 1996;65(3):265–296. doi: 10.1016/s0079-6107(96)00014-4. [DOI] [PubMed] [Google Scholar]
  37. Lipp P., Niggli E. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol. 1998 May 1;508(Pt 3):801–809. doi: 10.1111/j.1469-7793.1998.801bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lipp P., Niggli E. Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ Res. 1994 May;74(5):979–990. doi: 10.1161/01.res.74.5.979. [DOI] [PubMed] [Google Scholar]
  39. Lipp P., Niggli E. Submicroscopic calcium signals as fundamental events of excitation--contraction coupling in guinea-pig cardiac myocytes. J Physiol. 1996 Apr 1;492(Pt 1):31–38. doi: 10.1113/jphysiol.1996.sp021286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local, stochastic release of Ca2+ in voltage-clamped rat heart cells: visualization with confocal microscopy. J Physiol. 1994 Oct 1;480(Pt 1):21–29. doi: 10.1113/jphysiol.1994.sp020337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Marx S. O., Ondrias K., Marks A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science. 1998 Aug 7;281(5378):818–821. doi: 10.1126/science.281.5378.818. [DOI] [PubMed] [Google Scholar]
  42. PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Page S. G., Niedergerke R. Structures of physiological interest in the frog heart ventricle. J Cell Sci. 1972 Jul;11(1):179–203. doi: 10.1242/jcs.11.1.179. [DOI] [PubMed] [Google Scholar]
  45. Pape P. C., Jong D. S., Chandler W. K. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol. 1995 Aug;106(2):259–336. doi: 10.1085/jgp.106.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pape P. C., Jong D. S., Chandler W. K. Effects of partial sarcoplasmic reticulum calcium depletion on calcium release in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol. 1998 Sep;112(3):263–295. doi: 10.1085/jgp.112.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Parker I., Wier W. G. Variability in frequency and characteristics of Ca2+ sparks at different release sites in rat ventricular myocytes. J Physiol. 1997 Dec 1;505(Pt 2):337–344. doi: 10.1111/j.1469-7793.1997.337bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pratusevich V. R., Balke C. W. Factors shaping the confocal image of the calcium spark in cardiac muscle cells. Biophys J. 1996 Dec;71(6):2942–2957. doi: 10.1016/S0006-3495(96)79525-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Protasi F., Sun X. H., Franzini-Armstrong C. Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Dev Biol. 1996 Jan 10;173(1):265–278. doi: 10.1006/dbio.1996.0022. [DOI] [PubMed] [Google Scholar]
  50. Rome L. C., Syme D. A., Hollingworth S., Lindstedt S. L., Baylor S. M. The whistle and the rattle: the design of sound producing muscles. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8095–8100. doi: 10.1073/pnas.93.15.8095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ríos E., Stern M. D. Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu Rev Biophys Biomol Struct. 1997;26:47–82. doi: 10.1146/annurev.biophys.26.1.47. [DOI] [PubMed] [Google Scholar]
  52. Shirokova N., García J., Ríos E. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15;512(Pt 2):377–384. doi: 10.1111/j.1469-7793.1998.377be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shirokova N., Ríos E. Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J Physiol. 1997 Jul 1;502(Pt 1):3–11. doi: 10.1111/j.1469-7793.1997.003bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sommer J. R., Bossen E., Dalen H., Dolber P., High T., Jewett P., Johnson E. A., Junker J., Leonard S., Nassar R. To excite a heart: a bird's view. Acta Physiol Scand Suppl. 1991;599:5–21. [PubMed] [Google Scholar]
  55. Sommer J. R. Comparative anatomy: in praise of a powerful approach to elucidate mechanisms translating cardiac excitation into purposeful contraction. J Mol Cell Cardiol. 1995 Jan;27(1):19–35. doi: 10.1016/s0022-2828(08)80004-1. [DOI] [PubMed] [Google Scholar]
  56. Sommer J. R. Ultrastructural considerations concerning cardiac muscle. J Mol Cell Cardiol. 1982 Sep;14 (Suppl 3):77–83. doi: 10.1016/0022-2828(82)90133-x. [DOI] [PubMed] [Google Scholar]
  57. Stern M. D., Pizarro G., Ríos E. Local control model of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1997 Oct;110(4):415–440. doi: 10.1085/jgp.110.4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tsugorka A., Ríos E., Blatter L. A. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22;269(5231):1723–1726. doi: 10.1126/science.7569901. [DOI] [PubMed] [Google Scholar]
  59. Wier W. G., ter Keurs H. E., Marban E., Gao W. D., Balke C. W. Ca2+ 'sparks' and waves in intact ventricular muscle resolved by confocal imaging. Circ Res. 1997 Oct;81(4):462–469. doi: 10.1161/01.res.81.4.462. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES