Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1540–1546. doi: 10.1016/S0006-3495(99)77001-3

Tropomyosin modulates pH dependence of isometric tension.

H Fujita 1, S Ishiwata 1
PMCID: PMC1300441  PMID: 10465764

Abstract

We investigated the effect of pH on isometric tension in actin filament-reconstituted and thin filament-reconstituted bovine cardiac muscle fibers in the pH range of 6.0-7.4. Thin filament was reconstituted from purified G-actin with either bovine cardiac tropomyosin (Tm) or rabbit skeletal Tm in conjunction with cardiac or skeletal troponin (Tn). Results showed that isometric tension decreased linearly with a decrease in pH. The slope of the pH-tension relation, DeltaF/DeltapH (Deltarelative tension/Deltaunit pH), was 0.28 and 0.44 in control cardiac fibers and skeletal fibers, respectively. In actin filament-reconstituted fibers without regulatory proteins, DeltaF/DeltapH was 0.62, namely larger than that in cardiac or skeletal fibers. When reconstituted with cardiac Tm-Tn complex (nTm), DeltaF/DeltapH recovered to 0.32, close to the value obtained in control cardiac fibers. When reconstituted with skeletal nTm, DeltaF/DeltapH recovered to 0.48, close to the value for control skeletal fibers. To determine whether Tm or Tn is responsible for the inhibitory effects of nTm on the tension decrease caused by reduced pH, thin filament was reconstituted with cardiac Tm and skeletal Tn, or with skeletal Tm and cardiac Tn. When cardiac Tm was used, pH dependence of isometric tension coincided with that of control cardiac fibers. When skeletal Tm was used, the pH dependence coincided with that of control skeletal fibers. Furthermore, closely similar results were obtained in fibers reconstituted with actin and either cardiac or skeletal Tm without Tn. These results demonstrate that Tm but not Tn modulates the pH dependence of active tension.

Full Text

The Full Text of this article is available as a PDF (111.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chase P. B., Kushmerick M. J. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J. 1988 Jun;53(6):935–946. doi: 10.1016/S0006-3495(88)83174-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooke R., Franks K., Luciani G. B., Pate E. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol. 1988 Jan;395:77–97. doi: 10.1113/jphysiol.1988.sp016909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Curtin N. A., Kometani K., Woledge R. C. Effect of intracellular pH on force and heat production in isometric contraction of frog muscle fibres. J Physiol. 1988 Feb;396:93–104. doi: 10.1113/jphysiol.1988.sp016952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson M. J., Gadian D. G., Wilkie D. R. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature. 1978 Aug 31;274(5674):861–866. doi: 10.1038/274861a0. [DOI] [PubMed] [Google Scholar]
  5. Donaldson S. K., Hermansen L., Bolles L. Differential, direct effects of H+ on Ca2+ -activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch. 1978 Aug 25;376(1):55–65. doi: 10.1007/BF00585248. [DOI] [PubMed] [Google Scholar]
  6. Ebashi S., Kodama A., Ebashi F. Troponin. I. Preparation and physiological function. J Biochem. 1968 Oct;64(4):465–477. doi: 10.1093/oxfordjournals.jbchem.a128918. [DOI] [PubMed] [Google Scholar]
  7. Edman K. A., Mattiazzi A. R. Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres. J Muscle Res Cell Motil. 1981 Sep;2(3):321–334. doi: 10.1007/BF00713270. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg E., Kielley W. W. Troponin-tropomyosin complex. Column chromatographic separation and activity of the three, active troponin components with and without tropomyosin present. J Biol Chem. 1974 Aug 10;249(15):4742–4748. [PubMed] [Google Scholar]
  9. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujita H., Ishiwata S. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J. 1998 Sep;75(3):1439–1445. doi: 10.1016/S0006-3495(98)74062-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujita H., Yasuda K., Niitsu S., Funatsu T., Ishiwata S. Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J. 1996 Nov;71(5):2307–2318. doi: 10.1016/S0006-3495(96)79465-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukuda N., Fujita H., Fujita T., Ishiwata S. Spontaneous tension oscillation in skinned bovine cardiac muscle. Pflugers Arch. 1996 Nov-Dec;433(1-2):1–8. doi: 10.1007/s004240050241. [DOI] [PubMed] [Google Scholar]
  13. Funatsu T., Higuchi H., Ishiwata S. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol. 1990 Jan;110(1):53–62. doi: 10.1083/jcb.110.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Funatsu T., Kono E., Higuchi H., Kimura S., Ishiwata S., Yoshioka T., Maruyama K., Tsukita S. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol. 1993 Feb;120(3):711–724. doi: 10.1083/jcb.120.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horiuti K. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle. J Physiol. 1986 Apr;373:1–23. doi: 10.1113/jphysiol.1986.sp016032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishii Y., Lehrer S. S. Excimer fluorescence of pyrenyliodoacetamide-labeled tropomyosin: a probe of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry. 1990 Feb 6;29(5):1160–1166. doi: 10.1021/bi00457a010. [DOI] [PubMed] [Google Scholar]
  17. Ishiwata S., Funatsu T., Fujita H. Contractile properties of thin (actin) filament-reconstituted muscle fibers. Adv Exp Med Biol. 1998;453:319–329. doi: 10.1007/978-1-4684-6039-1_37. [DOI] [PubMed] [Google Scholar]
  18. Ishiwata S., Kondo H. Studies on the F-actin.tropomyosin.troponin complex. II. Partial reconstitution of thin filament by F-actin, tropomyosin and the tropomyosin binding component of troponin (TN-T). Biochim Biophys Acta. 1978 Jun 21;534(2):341–349. doi: 10.1016/0005-2795(78)90017-x. [DOI] [PubMed] [Google Scholar]
  19. Kawashima A., Morimoto S., Suzuki A., Shiraishi F., Ohtsuki I. Troponin isoform dependent pH dependence of the Ca(2+)-activated myofibrillar ATPase activity of avian slow and fast skeletal muscles. Biochem Biophys Res Commun. 1995 Feb 15;207(2):585–592. doi: 10.1006/bbrc.1995.1228. [DOI] [PubMed] [Google Scholar]
  20. Kondo H., Ishiwata S. Uni-directional growth of F-actin. J Biochem. 1976 Jan;79(1):159–171. doi: 10.1093/oxfordjournals.jbchem.a131043. [DOI] [PubMed] [Google Scholar]
  21. Kurokawa H., Fujii W., Ohmi K., Sakurai T., Nonomura Y. Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990 Apr 30;168(2):451–457. doi: 10.1016/0006-291x(90)92342-w. [DOI] [PubMed] [Google Scholar]
  22. Lehman W., Vibert P., Uman P., Craig R. Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol. 1995 Aug 11;251(2):191–196. doi: 10.1006/jmbi.1995.0425. [DOI] [PubMed] [Google Scholar]
  23. Lewis W. G., Smillie L. B. The amino acid sequence of rabbit cardiac tropomyosin. J Biol Chem. 1980 Jul 25;255(14):6854–6859. [PubMed] [Google Scholar]
  24. Mak A. S., Smillie L. B., Stewart G. R. A comparison of the amino acid sequences of rabbit skeletal muscle alpha- and beta-tropomyosins. J Biol Chem. 1980 Apr 25;255(8):3647–3655. [PubMed] [Google Scholar]
  25. Metzger J. M., Moss R. L. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol. 1987 Dec;393:727–742. doi: 10.1113/jphysiol.1987.sp016850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Metzger J. M., Parmacek M. S., Barr E., Pasyk K., Lin W. I., Cochrane K. L., Field L. J., Leiden J. M. Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9036–9040. doi: 10.1073/pnas.90.19.9036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nadal-Ginard B., Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest. 1989 Dec;84(6):1693–1700. doi: 10.1172/JCI114351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palmer S., Kentish J. C. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres. J Physiol. 1994 Oct 1;480(Pt 1):45–60. doi: 10.1113/jphysiol.1994.sp020339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palmiter K. A., Kitada Y., Muthuchamy M., Wieczorek D. F., Solaro R. J. Exchange of beta- for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem. 1996 May 17;271(20):11611–11614. doi: 10.1074/jbc.271.20.11611. [DOI] [PubMed] [Google Scholar]
  30. Parsons B., Szczesna D., Zhao J., Van Slooten G., Kerrick W. G., Putkey J. A., Potter J. D. The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J Muscle Res Cell Motil. 1997 Oct;18(5):599–609. doi: 10.1023/a:1018623604365. [DOI] [PubMed] [Google Scholar]
  31. Potma E. J., van Graas I. A., Stienen G. J. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit. Biophys J. 1994 Dec;67(6):2404–2410. doi: 10.1016/S0006-3495(94)80727-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Robertson S. P., Kerrick W. G. The effects of pH on Ca2+-activated force in frog skeletal muscle fibers. Pflugers Arch. 1979 May 15;380(1):41–45. doi: 10.1007/BF00582610. [DOI] [PubMed] [Google Scholar]
  33. Solaro R. J., Kumar P., Blanchard E. M., Martin A. F. Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Evidence for developmental differences in thin filament regulation. Circ Res. 1986 May;58(5):721–729. doi: 10.1161/01.res.58.5.721. [DOI] [PubMed] [Google Scholar]
  34. Solaro R. J., el-Saleh S. C., Kentish J. C. Ca2+, pH and the regulation of cardiac myofilament force and ATPase activity. Mol Cell Biochem. 1989 Sep 7;89(2):163–167. doi: 10.1007/BF00220770. [DOI] [PubMed] [Google Scholar]
  35. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  36. Stone D., Smillie L. B. The amino acid sequence of rabbit skeletal alpha-tropomyosin. The NH2-terminal half and complete sequence. J Biol Chem. 1978 Feb 25;253(4):1137–1148. [PubMed] [Google Scholar]
  37. Tanaka H. The helix content of tropomyosin and the interaction between tropomyosin and F-actin under various conditions. Biochim Biophys Acta. 1972 Oct 31;278(3):556–566. doi: 10.1016/0005-2795(72)90015-3. [DOI] [PubMed] [Google Scholar]
  38. Yamaguchi M. Modulating factors of calcium-free contraction at low [MgATP]: a physiological study on the steady states of skinned fibres of frog skeletal muscle. J Muscle Res Cell Motil. 1998 Nov;19(8):949–960. doi: 10.1023/a:1005405002095. [DOI] [PubMed] [Google Scholar]
  39. Yasuda K., Anazawa T., Ishiwata S. Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J. 1995 Feb;68(2):598–608. doi: 10.1016/S0006-3495(95)80221-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES