Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1547–1555. doi: 10.1016/S0006-3495(99)77002-5

Spermine-induced aggregation of DNA, nucleosome, and chromatin.

E Raspaud 1, I Chaperon 1, A Leforestier 1, F Livolant 1
PMCID: PMC1300442  PMID: 10465765

Abstract

We have analyzed the conditions of aggregation or precipitation of DNA in four different states: double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), mononucleosome core particles (NCP), and H1-depleted chromatin fragments (ChF) in the presence of the multivalent cation spermine (4+). In an intermediate regime of DNA concentration, these conditions are identical for the four states. This result demonstrates that the mechanism involved is general from flexible chains to rigid rods and quasi-colloidal states. It is dominated by local electrostatic attractions that are considered, for instance, by the "ion-bridging" model. The onset of precipitation does not require the electroneutrality of the DNA chains. Above a given spermine concentration dsDNA aggregates remain neutral, whereas NCP aggregates turn positively charged. The difference is thought to originate from the extension of the positively charged proteic tails of the NCP. This suggests that local fluctuations of polyamine concentrations can induce either positively or negatively charged chromatin domains.

Full Text

The Full Text of this article is available as a PDF (106.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark D. J., Kimura T. Electrostatic mechanism of chromatin folding. J Mol Biol. 1990 Feb 20;211(4):883–896. doi: 10.1016/0022-2836(90)90081-V. [DOI] [PubMed] [Google Scholar]
  2. Dumuis-Kervabon A., Encontre I., Etienne G., Jauregui-Adell J., Méry J., Mesnier D., Parello J. A chromatin core particle obtained by selective cleavage of histones by clostripain. EMBO J. 1986 Jul;5(7):1735–1742. doi: 10.1002/j.1460-2075.1986.tb04418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Encontre I., Parello J. Chromatin core particle obtained by selective cleavage of histones H3 and H4 by clostripain. J Mol Biol. 1988 Aug 5;202(3):673–676. doi: 10.1016/0022-2836(88)90296-3. [DOI] [PubMed] [Google Scholar]
  4. Khrapunov S. N., Dragan A. I., Sivolob A. V., Zagariya A. M. Mechanisms of stabilizing nucleosome structure. Study of dissociation of histone octamer from DNA. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):213–222. doi: 10.1016/s0167-4781(96)00199-6. [DOI] [PubMed] [Google Scholar]
  5. Leforestier A., Livolant F. Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase. Biophys J. 1997 Oct;73(4):1771–1776. doi: 10.1016/S0006-3495(97)78207-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  7. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  8. Marquet R., Wyart A., Houssier C. Influence of DNA length on spermine-induced condensation. Importance of the bending and stiffening of DNA. Biochim Biophys Acta. 1987 Aug 25;909(3):165–172. doi: 10.1016/0167-4781(87)90074-1. [DOI] [PubMed] [Google Scholar]
  9. Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
  10. Raspaud E., Olvera de la Cruz M., Sikorav J. L., Livolant F. Precipitation of DNA by polyamines: a polyelectrolyte behavior. Biophys J. 1998 Jan;74(1):381–393. doi: 10.1016/S0006-3495(98)77795-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Record M. T., Jr, Woodbury C. P., Lohman T. M. Na+ effects on transition of DNA and polynucleotides of variable linear charge density. Biopolymers. 1976 May;15(5):893–915. doi: 10.1002/bip.1976.360150507. [DOI] [PubMed] [Google Scholar]
  12. Saminathan M., Antony T., Shirahata A., Sigal L. H., Thomas T., Thomas T. J. Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry. 1999 Mar 23;38(12):3821–3830. doi: 10.1021/bi9825753. [DOI] [PubMed] [Google Scholar]
  13. Sikorav J. L., Pelta J., Livolant F. A liquid crystalline phase in spermidine-condensed DNA. Biophys J. 1994 Oct;67(4):1387–1392. doi: 10.1016/S0006-3495(94)80640-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smirnov I. V., Dimitrov S. I., Makarov V. L. Polyamine-DNA interactions. Condensation of chromatin and naked DNA. J Biomol Struct Dyn. 1988 Apr;5(5):1149–1161. doi: 10.1080/07391102.1988.10506455. [DOI] [PubMed] [Google Scholar]
  15. Watanabe K., Iso K. Magnesium binding and conformational change of DNA in chromatin. Biochemistry. 1984 Mar 27;23(7):1376–1383. doi: 10.1021/bi00302a007. [DOI] [PubMed] [Google Scholar]
  16. Wilson R. W., Bloomfield V. A. Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry. 1979 May 29;18(11):2192–2196. doi: 10.1021/bi00578a009. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES