Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1594–1601. doi: 10.1016/S0006-3495(99)77007-4

vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching.

A Kukol 1, I T Arkin 1
PMCID: PMC1300447  PMID: 10465770

Abstract

The recently developed method of site-directed Fourier transform infrared dichroism for obtaining orientational constraints of oriented polymers is applied here to the transmembrane domain of the vpu protein from the human immunodeficiency virus type 1 (HIV-1). The infrared spectra of the 31-residue-long vpu peptide reconstituted in lipid vesicles reveal a predominantly alpha-helical structure. The infrared dichroism data of the (13)C-labeled peptide yielded a helix tilt beta = (6.5 +/- 1.7) degrees from the membrane normal. The rotational pitch angle omega, defined as zero for a residue located in the direction of the helix tilt, is omega = (283 +/- 11) degrees for the (13)C labels Val(13)/Val(20) and omega = (23 +/- 11) degrees for the (13)C labels Ala(14)/Val(21). A global molecular dynamics search protocol restraining the helix tilt to the experimental value was performed for oligomers of four, five, and six subunits. From 288 structures for each oligomer, a left-handed pentameric coiled coil was obtained, which best fits the experimental data. The structure reveals a pore occluded by Trp residues at the intracellular end of the transmembrane domain.

Full Text

The Full Text of this article is available as a PDF (263.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Arkin I. T., Engelman D. M., Brünger A. T. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat Struct Biol. 1995 Feb;2(2):154–162. doi: 10.1038/nsb0295-154. [DOI] [PubMed] [Google Scholar]
  2. Braiman M. S., Rothschild K. J. Fourier transform infrared techniques for probing membrane protein structure. Annu Rev Biophys Biophys Chem. 1988;17:541–570. doi: 10.1146/annurev.bb.17.060188.002545. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  4. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  5. Cladera J., Torres J., Padrós E. Analysis of conformational changes in bacteriorhodopsin upon retinal removal. Biophys J. 1996 Jun;70(6):2882–2887. doi: 10.1016/S0006-3495(96)79858-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coady M. J., Daniel N. G., Tiganos E., Allain B., Friborg J., Lapointe J. Y., Cohen E. A. Effects of Vpu expression on Xenopus oocyte membrane conductance. Virology. 1998 Apr 25;244(1):39–49. doi: 10.1006/viro.1998.9087. [DOI] [PubMed] [Google Scholar]
  7. Cohen E. A., Terwilliger E. F., Sodroski J. G., Haseltine W. A. Identification of a protein encoded by the vpu gene of HIV-1. Nature. 1988 Aug 11;334(6182):532–534. doi: 10.1038/334532a0. [DOI] [PubMed] [Google Scholar]
  8. Ewart G. D., Sutherland T., Gage P. W., Cox G. B. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol. 1996 Oct;70(10):7108–7115. doi: 10.1128/jvi.70.10.7108-7115.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friborg J., Ladha A., Göttlinger H., Haseltine W. A., Cohen E. A. Functional analysis of the phosphorylation sites on the human immunodeficiency virus type 1 Vpu protein. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Jan 1;8(1):10–22. [PubMed] [Google Scholar]
  10. González M. E., Carrasco L. The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry. 1998 Sep 29;37(39):13710–13719. doi: 10.1021/bi981527f. [DOI] [PubMed] [Google Scholar]
  11. Göttlinger H. G., Dorfman T., Cohen E. A., Haseltine W. A. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7381–7385. doi: 10.1073/pnas.90.15.7381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holsinger L. J., Nichani D., Pinto L. H., Lamb R. A. Influenza A virus M2 ion channel protein: a structure-function analysis. J Virol. 1994 Mar;68(3):1551–1563. doi: 10.1128/jvi.68.3.1551-1563.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klimkait T., Strebel K., Hoggan M. D., Martin M. A., Orenstein J. M. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol. 1990 Feb;64(2):621–629. doi: 10.1128/jvi.64.2.621-629.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
  16. Lamb R. A., Pinto L. H. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology. 1997 Mar 3;229(1):1–11. doi: 10.1006/viro.1997.8451. [DOI] [PubMed] [Google Scholar]
  17. Lecrenier N., Foury F., Goffeau A. Two-hybrid systematic screening of the yeast proteome. Bioessays. 1998 Jan;20(1):1–5. doi: 10.1002/(SICI)1521-1878(199801)20:1<1::AID-BIES2>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  18. Maldarelli F., Chen M. Y., Willey R. L., Strebel K. Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol. 1993 Aug;67(8):5056–5061. doi: 10.1128/jvi.67.8.5056-5061.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PAULING L., COREY R. B., BRANSON H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A. 1951 Apr;37(4):205–211. doi: 10.1073/pnas.37.4.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sansom M. S. Models and simulations of ion channels and related membrane proteins. Curr Opin Struct Biol. 1998 Apr;8(2):237–244. doi: 10.1016/s0959-440x(98)80045-6. [DOI] [PubMed] [Google Scholar]
  21. Schubert U., Bour S., Ferrer-Montiel A. V., Montal M., Maldarell F., Strebel K. The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol. 1996 Feb;70(2):809–819. doi: 10.1128/jvi.70.2.809-819.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 1996 Nov 25;398(1):12–18. doi: 10.1016/s0014-5793(96)01146-5. [DOI] [PubMed] [Google Scholar]
  23. Schubert U., Strebel K. Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol. 1994 Apr;68(4):2260–2271. doi: 10.1128/jvi.68.4.2260-2271.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Strebel K., Klimkait T., Maldarelli F., Martin M. A. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol. 1989 Sep;63(9):3784–3791. doi: 10.1128/jvi.63.9.3784-3791.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strebel K., Klimkait T., Martin M. A. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science. 1988 Sep 2;241(4870):1221–1223. doi: 10.1126/science.3261888. [DOI] [PubMed] [Google Scholar]
  26. Torres J., Sepulcre F., Padrós E. Conformational changes in bacteriorhodopsin associated with protein-protein interactions: a functional alpha I-alpha II helix switch? Biochemistry. 1995 Dec 19;34(50):16320–16326. doi: 10.1021/bi00050a012. [DOI] [PubMed] [Google Scholar]
  27. Tosteson M. T., Caulfield M. P., Levy J. J., Rosenblatt M., Tosteson D. C. The synthetic precursor specific region of pre-pro-parathyroid hormone forms ion channels in lipid bilayers. Biosci Rep. 1988 Apr;8(2):173–183. doi: 10.1007/BF01116462. [DOI] [PubMed] [Google Scholar]
  28. Yao X. J., Göttlinger H., Haseltine W. A., Cohen E. A. Envelope glycoprotein and CD4 independence of vpu-facilitated human immunodeficiency virus type 1 capsid export. J Virol. 1992 Aug;66(8):5119–5126. doi: 10.1128/jvi.66.8.5119-5126.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES