Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1602–1608. doi: 10.1016/S0006-3495(99)77008-6

Ice-binding surface of fish type III antifreeze.

G Chen 1, Z Jia 1
PMCID: PMC1300448  PMID: 10465771

Abstract

We employed computational techniques, including molecular docking, energy minimization, and molecular dynamics simulation, to investigate the ice-binding surface of fish type III antifreeze protein (AFP). The putative ice-binding site was previously identified by mutagenesis, structural analysis, and flatness evaluation. Using a high-resolution x-ray structure of fish type III AFP as a model, we calculated the ice-binding interaction energy of 11 surface patches chosen to cover the entire surface of the protein. These various surface patches exhibit small but significantly different ice-binding interaction energies. For both the prism ice plane and an "ice" plane in which water O atoms are randomly positioned, our calculations show that a surface patch containing 14 residues (L19, V20, T18, S42, V41, Q9, P12, A16, M21, T15, Q44, I13, N14, K61) has the most favorable interaction energy and corresponds to the previously identified ice-binding site of type III AFP. Although in general agreement with the earlier studies, our results also suggest that the ice-binding site may be larger than the previously identified "core" cluster that includes mostly hydrophilic residues. The enlargement mainly results from the inclusion of peripheral hydrophobic residues and K61.

Full Text

The Full Text of this article is available as a PDF (145.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng A., Merz K. M., Jr Ice-binding mechanism of winter flounder antifreeze proteins. Biophys J. 1997 Dec;73(6):2851–2873. doi: 10.1016/S0006-3495(97)78315-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992 Jan 20;223(2):509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
  3. Davies P. L., Hew C. L. Biochemistry of fish antifreeze proteins. FASEB J. 1990 May;4(8):2460–2468. doi: 10.1096/fasebj.4.8.2185972. [DOI] [PubMed] [Google Scholar]
  4. Davies P. L., Sykes B. D. Antifreeze proteins. Curr Opin Struct Biol. 1997 Dec;7(6):828–834. doi: 10.1016/s0959-440x(97)80154-6. [DOI] [PubMed] [Google Scholar]
  5. DeLuca C. I., Davies P. L., Ye Q., Jia Z. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J Mol Biol. 1998 Jan 23;275(3):515–525. doi: 10.1006/jmbi.1997.1482. [DOI] [PubMed] [Google Scholar]
  6. Deng G., Andrews D. W., Laursen R. A. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 1997 Jan 27;402(1):17–20. doi: 10.1016/s0014-5793(96)01466-4. [DOI] [PubMed] [Google Scholar]
  7. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  8. Graether S. P., DeLuca C. I., Baardsnes J., Hill G. A., Davies P. L., Jia Z. Quantitative and qualitative analysis of type III antifreeze protein structure and function. J Biol Chem. 1999 Apr 23;274(17):11842–11847. doi: 10.1074/jbc.274.17.11842. [DOI] [PubMed] [Google Scholar]
  9. Jia Z., DeLuca C. I., Chao H., Davies P. L. Structural basis for the binding of a globular antifreeze protein to ice. Nature. 1996 Nov 21;384(6606):285–288. doi: 10.1038/384285a0. [DOI] [PubMed] [Google Scholar]
  10. Jorgensen H., Mori M., Matsui H., Kanaoka M., Yanagi H., Yabusaki Y., Kikuzono Y. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice. Protein Eng. 1993 Jan;6(1):19–27. doi: 10.1093/protein/6.1.19. [DOI] [PubMed] [Google Scholar]
  11. Knight C. A., Cheng C. C., DeVries A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J. 1991 Feb;59(2):409–418. doi: 10.1016/S0006-3495(91)82234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McDonald S. M., Brady J. W., Clancy P. Molecular dynamics simulations of a winter flounder "antifreeze" polypeptide in aqueous solution. Biopolymers. 1993 Oct;33(10):1481–1503. doi: 10.1002/bip.360331002. [DOI] [PubMed] [Google Scholar]
  13. Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sönnichsen F. D., DeLuca C. I., Davies P. L., Sykes B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 1996 Nov 15;4(11):1325–1337. doi: 10.1016/s0969-2126(96)00140-2. [DOI] [PubMed] [Google Scholar]
  15. Sönnichsen F. D., Sykes B. D., Davies P. L. Comparative modeling of the three-dimensional structure of type II antifreeze protein. Protein Sci. 1995 Mar;4(3):460–471. doi: 10.1002/pro.5560040313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wen D., Laursen R. A. A model for binding of an antifreeze polypeptide to ice. Biophys J. 1992 Dec;63(6):1659–1662. doi: 10.1016/S0006-3495(92)81750-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wierzbicki A., Madura J. D., Salmon C., Sönnichsen F. Modeling studies of binding of sea raven type II antifreeze protein to ice. J Chem Inf Comput Sci. 1997 Nov-Dec;37(6):1006–1010. doi: 10.1021/ci9702353. [DOI] [PubMed] [Google Scholar]
  18. Wierzbicki A., Taylor M. S., Knight C. A., Madura J. D., Harrington J. P., Sikes C. S. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice. Biophys J. 1996 Jul;71(1):8–18. doi: 10.1016/S0006-3495(96)79204-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yang D. S., Hon W. C., Bubanko S., Xue Y., Seetharaman J., Hew C. L., Sicheri F. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. Biophys J. 1998 May;74(5):2142–2151. doi: 10.1016/S0006-3495(98)77923-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES