Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1609–1618. doi: 10.1016/S0006-3495(99)77009-8

Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.

M M Javadpour 1, M Eilers 1, M Groesbeek 1, S O Smith 1
PMCID: PMC1300449  PMID: 10465772

Abstract

The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex.

Full Text

The Full Text of this article is available as a PDF (329.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P., Vilsen B., MacLennan D. H. Functional consequences of alterations to Gly310, Gly770, and Gly801 located in the transmembrane domain of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Feb 5;267(4):2767–2774. [PubMed] [Google Scholar]
  2. Aurora R., Srinivasan R., Rose G. D. Rules for alpha-helix termination by glycine. Science. 1994 May 20;264(5162):1126–1130. doi: 10.1126/science.8178170. [DOI] [PubMed] [Google Scholar]
  3. Bormann B. J., Knowles W. J., Marchesi V. T. Synthetic peptides mimic the assembly of transmembrane glycoproteins. J Biol Chem. 1989 Mar 5;264(7):4033–4037. [PubMed] [Google Scholar]
  4. Bowie J. U. Helix packing angle preferences. Nat Struct Biol. 1997 Nov;4(11):915–917. doi: 10.1038/nsb1197-915. [DOI] [PubMed] [Google Scholar]
  5. Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
  6. Burke C. L., Lemmon M. A., Coren B. A., Engelman D. M., Stern D. F. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene. 1997 Feb 13;14(6):687–696. doi: 10.1038/sj.onc.1200873. [DOI] [PubMed] [Google Scholar]
  7. Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
  8. Chothia C., Levitt M., Richardson D. Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4130–4134. doi: 10.1073/pnas.74.10.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  10. Cosson P., Bonifacino J. S. Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science. 1992 Oct 23;258(5082):659–662. doi: 10.1126/science.1329208. [DOI] [PubMed] [Google Scholar]
  11. Deber C. M., Brandl C. J., Deber R. B., Hsu L. C., Young X. K. Amino acid composition of the membrane and aqueous domains of integral membrane proteins. Arch Biochem Biophys. 1986 Nov 15;251(1):68–76. doi: 10.1016/0003-9861(86)90052-4. [DOI] [PubMed] [Google Scholar]
  12. Deber C. M., Khan A. R., Li Z., Joensson C., Glibowicka M., Wang J. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11648–11652. doi: 10.1073/pnas.90.24.11648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Derewenda Z. S., Derewenda U., Kobos P. M. (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases. J Mol Biol. 1994 Aug 5;241(1):83–93. doi: 10.1006/jmbi.1994.1475. [DOI] [PubMed] [Google Scholar]
  14. Derewenda Z. S., Lee L., Derewenda U. The occurrence of C-H...O hydrogen bonds in proteins. J Mol Biol. 1995 Sep 15;252(2):248–262. doi: 10.1006/jmbi.1995.0492. [DOI] [PubMed] [Google Scholar]
  15. Frillingos S., Ujwal M. L., Sun J., Kaback H. R. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis. Protein Sci. 1997 Feb;6(2):431–437. doi: 10.1002/pro.5560060220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  17. Han M., Groesbeek M., Sakmar T. P., Smith S. O. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13442–13447. doi: 10.1073/pnas.94.25.13442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Han M., Lin S. W., Smith S. O., Sakmar T. P. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. J Biol Chem. 1996 Dec 13;271(50):32330–32336. doi: 10.1074/jbc.271.50.32330. [DOI] [PubMed] [Google Scholar]
  19. Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol. 1993 Feb 5;229(3):602–608. doi: 10.1006/jmbi.1993.1066. [DOI] [PubMed] [Google Scholar]
  20. Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys. 1994 May;27(2):157–218. doi: 10.1017/s0033583500004522. [DOI] [PubMed] [Google Scholar]
  21. Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
  22. Lemmon M. A., Flanagan J. M., Treutlein H. R., Zhang J., Engelman D. M. Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry. 1992 Dec 29;31(51):12719–12725. doi: 10.1021/bi00166a002. [DOI] [PubMed] [Google Scholar]
  23. Lemmon M. A., Treutlein H. R., Adams P. D., Brünger A. T., Engelman D. M. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol. 1994 Mar;1(3):157–163. doi: 10.1038/nsb0394-157. [DOI] [PubMed] [Google Scholar]
  24. Li S. C., Deber C. M. Glycine and beta-branched residues support and modulate peptide helicity in membrane environments. FEBS Lett. 1992 Oct 26;311(3):217–220. doi: 10.1016/0014-5793(92)81106-v. [DOI] [PubMed] [Google Scholar]
  25. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  26. Millar D. G., Shore G. C. The signal anchor sequence of mitochondrial Mas70p contains an oligomerization domain. J Biol Chem. 1993 Sep 5;268(25):18403–18406. [PubMed] [Google Scholar]
  27. Nakashima H., Nishikawa K., Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem. 1986 Jan;99(1):153–162. doi: 10.1093/oxfordjournals.jbchem.a135454. [DOI] [PubMed] [Google Scholar]
  28. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  29. Richards F. M., Kundrot C. E. Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure. Proteins. 1988;3(2):71–84. doi: 10.1002/prot.340030202. [DOI] [PubMed] [Google Scholar]
  30. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  31. Smith S. O., Bormann B. J. Determination of helix-helix interactions in membranes by rotational resonance NMR. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):488–491. doi: 10.1073/pnas.92.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sternberg M. J., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 1990 Mar;3(4):245–248. doi: 10.1093/protein/3.4.245. [DOI] [PubMed] [Google Scholar]
  33. Sternberg M. J., Gullick W. J. Neu receptor dimerization. Nature. 1989 Jun 22;339(6226):587–587. doi: 10.1038/339587a0. [DOI] [PubMed] [Google Scholar]
  34. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  35. Wallin E., Tsukihara T., Yoshikawa S., von Heijne G., Elofsson A. Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 1997 Apr;6(4):808–815. doi: 10.1002/pro.5560060407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walther D., Eisenhaber F., Argos P. Principles of helix-helix packing in proteins: the helical lattice superposition model. J Mol Biol. 1996 Jan 26;255(3):536–553. doi: 10.1006/jmbi.1996.0044. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES