Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1638–1654. doi: 10.1016/S0006-3495(99)77012-8

The lifetime of insulin hexamers.

U Hassiepen 1, M Federwisch 1, T Mülders 1, A Wollmer 1
PMCID: PMC1300452  PMID: 10465775

Abstract

The kinetic stability of insulin hexamers containing two metal ions was investigated by means of hybridization experiments. Insulin was covalently labeled at the N(epsilon)-amino group of Lys(B29) by a fluorescence donor and acceptor group, respectively. The labels neither affect the tertiary structure nor interfere with self-association. Equimolar solutions of pure donor and acceptor insulin hexamers were mixed, and the hybridization was monitored by fluorescence resonance energy transfer. With the total insulin concentration remaining constant and the association/dissociation equilibria unperturbed, the subunit interchange between hexamers is an entropy-driven relaxation process that ends at statistical distribution of the labels over 16 types of hexamers differing by their composition. The analytical description of the interchange kinetics on the basis of a plausible model has yielded the first experimental values for the lifetime of the hexamers. The lifetime is reciprocal to the product of the concentration of the exchanged species and the interchange rate constant: tau = 1/(c. k). Measured for different concentrations, temperatures, metal ions, and ligand-dependent conformational states, the lifetime was found to cover a range from minutes for T(6) to days for R(6) hexamers. The approach can be used under an unlimited variety of conditions. The information it provides is of obvious relevance for the handling, storage, and pharmacokinetic properties of insulin preparations.

Full Text

The Full Text of this article is available as a PDF (291.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Weber G. The reversible acid dissociation and hybridization of lactic dehydrogenase. Arch Biochem Biophys. 1966 Sep 26;116(1):207–223. doi: 10.1016/0003-9861(66)90028-2. [DOI] [PubMed] [Google Scholar]
  2. Bakaysa D. L., Radziuk J., Havel H. A., Brader M. L., Li S., Dodd S. W., Beals J. M., Pekar A. H., Brems D. N. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci. 1996 Dec;5(12):2521–2531. doi: 10.1002/pro.5560051215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
  4. Bentley G., Dodson E., Dodson G., Hodgkin D., Mercola D. Structure of insulin in 4-zinc insulin. Nature. 1976 May 13;261(5556):166–168. doi: 10.1038/261166a0. [DOI] [PubMed] [Google Scholar]
  5. Coffman F. D., Dunn M. F. Insulin-metal ion interactions: the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers. Biochemistry. 1988 Aug 9;27(16):6179–6187. doi: 10.1021/bi00416a053. [DOI] [PubMed] [Google Scholar]
  6. Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Reynolds C. D., Smith G. D., Sparks C., Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989 Apr 13;338(6216):594–596. doi: 10.1038/338594a0. [DOI] [PubMed] [Google Scholar]
  7. Dodson G., Steiner D. The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol. 1998 Apr;8(2):189–194. doi: 10.1016/s0959-440x(98)80037-7. [DOI] [PubMed] [Google Scholar]
  8. Erijman L., Weber G. Oligomeric protein associations: transition from stochastic to deterministic equilibrium. Biochemistry. 1991 Feb 12;30(6):1595–1599. doi: 10.1021/bi00220a022. [DOI] [PubMed] [Google Scholar]
  9. Erijman L., Weber G. Use of sensitized fluorescence for the study of the exchange of subunits in protein aggregates. Photochem Photobiol. 1993 Mar;57(3):411–415. doi: 10.1111/j.1751-1097.1993.tb02310.x. [DOI] [PubMed] [Google Scholar]
  10. Gross L., Dunn M. F. Spectroscopic evidence for an intermediate in the T6 to R6 allosteric transition of the Co(II)-substituted insulin hexamer. Biochemistry. 1992 Feb 11;31(5):1295–1301. doi: 10.1021/bi00120a004. [DOI] [PubMed] [Google Scholar]
  11. Hassiepen U., Federwisch M., Mülders T., Lenz V. J., Gattner H. G., Krüger P., Wollmer A. Analysis of protein self-association at constant concentration by fluorescence-energy transfer. Eur J Biochem. 1998 Aug 1;255(3):580–587. doi: 10.1046/j.1432-1327.1998.2550580.x. [DOI] [PubMed] [Google Scholar]
  12. Hvidt S. Insulin association in neutral solutions studied by light scattering. Biophys Chem. 1991 Feb;39(2):205–213. doi: 10.1016/0301-4622(91)85023-j. [DOI] [PubMed] [Google Scholar]
  13. Jacoby E., Hua Q. X., Stern A. S., Frank B. H., Weiss M. A. Structure and dynamics of a protein assembly. 1H-NMR studies of the 36 kDa R6 insulin hexamer. J Mol Biol. 1996 Apr 26;258(1):136–157. doi: 10.1006/jmbi.1996.0239. [DOI] [PubMed] [Google Scholar]
  14. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  15. Jaenicke R., Koberstein R., Teuscher B. The enzymically active unit of lactic dehydrogenase. Molecular properties of lactic dehydrogenase at low-protein and high salt concentrations. Eur J Biochem. 1971 Nov 11;23(1):150–159. doi: 10.1111/j.1432-1033.1971.tb01602.x. [DOI] [PubMed] [Google Scholar]
  16. Jaenicke R., Rudolph R. Refolding and association of oligomeric proteins. Methods Enzymol. 1986;131:218–250. doi: 10.1016/0076-6879(86)31043-7. [DOI] [PubMed] [Google Scholar]
  17. Kaarsholm N. C., Ko H. C., Dunn M. F. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry. 1989 May 16;28(10):4427–4435. doi: 10.1021/bi00436a046. [DOI] [PubMed] [Google Scholar]
  18. Koren R., Hammes G. G. A kinetic study of protein-protein interactions. Biochemistry. 1976 Mar 9;15(5):1165–1171. doi: 10.1021/bi00650a032. [DOI] [PubMed] [Google Scholar]
  19. Krüger P., Gilge G., Cabuk Y., Wollmer A. Cooperativity and intermediate states in the T----R-structural transformation of insulin. Biol Chem Hoppe Seyler. 1990 Aug;371(8):669–673. doi: 10.1515/bchm3.1990.371.2.669. [DOI] [PubMed] [Google Scholar]
  20. Lenz V. J., Gattner H. G., Leithäuser M., Brandenburg D., Wollmer A., Höcker H. Proteolyses of a fluorogenic insulin derivative and native insulin in reversed micelles monitored by fluorescence emission, reversed-phase high-performance liquid chromatography, and capillary zone electrophoresis. Anal Biochem. 1994 Aug 15;221(1):85–93. doi: 10.1006/abio.1994.1383. [DOI] [PubMed] [Google Scholar]
  21. Meighen E. A., Pigiet V., Schachman H. K. Hybridization of native and chemically modified enzymes. 3. The catalytic subunits of aspartate transcarbamylase. Proc Natl Acad Sci U S A. 1970 Jan;65(1):234–241. doi: 10.1073/pnas.65.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  23. Osborne H. H., Hollaway M. R. The hybridization of glyceraldehyde 3-phosphate dehydrogenases from rabbit muscle and yeast. Kinetics and thermodynamics of the reaction and isolation of the hybrid. Biochem J. 1974 Dec;143(3):651–662. doi: 10.1042/bj1430651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Palmieri R., Lee R. W., Dunn M. F. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change. Biochemistry. 1988 May 3;27(9):3387–3397. doi: 10.1021/bi00409a040. [DOI] [PubMed] [Google Scholar]
  25. Peterman B. F. Measurement of the dead time of a fluorescence stopped-flow instrument. Anal Biochem. 1979 Mar;93(2):442–444. doi: 10.1016/s0003-2697(79)80176-1. [DOI] [PubMed] [Google Scholar]
  26. Rahuel-Clermont S., French C. A., Kaarsholm N. C., Dunn M. F., Chou C. I. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Biochemistry. 1997 May 13;36(19):5837–5845. doi: 10.1021/bi963038q. [DOI] [PubMed] [Google Scholar]
  27. Ramesh V., Bradbury J. H. 1H n.m.r. studies of insulin. Reversible transformation of 2-zinc to 4-zinc insulin hexamer. Int J Pept Protein Res. 1986 Aug;28(2):146–153. [PubMed] [Google Scholar]
  28. Renscheidt H., Strassburger W., Glatter U., Wollmer A., Dodson G. G., Mercola D. A. A solution equivalent of the 2Zn----4Zn transformation of insulin in the crystal. Eur J Biochem. 1984 Jul 2;142(1):7–14. doi: 10.1111/j.1432-1033.1984.tb08243.x. [DOI] [PubMed] [Google Scholar]
  29. Roy M., Brader M. L., Lee R. W., Kaarsholm N. C., Hansen J. F., Dunn M. F. Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. J Biol Chem. 1989 Nov 15;264(32):19081–19085. [PubMed] [Google Scholar]
  30. Schulzki H. D., Kramer B., Fleischhauer J., Mercola D. A., Wollmer A. Calcium-dependent distance changes in binary and ternary complexes of troponin. Eur J Biochem. 1990 May 20;189(3):683–692. doi: 10.1111/j.1432-1033.1990.tb15537.x. [DOI] [PubMed] [Google Scholar]
  31. Smith G. D., Dodson G. G. The structure of a rhombohedral R6 insulin hexamer that binds phenol. Biopolymers. 1992 Apr;32(4):441–445. doi: 10.1002/bip.360320422. [DOI] [PubMed] [Google Scholar]
  32. Thomas B., Wollmer A. Cobalt probing of structural alternatives for insulin in solution. Biol Chem Hoppe Seyler. 1989 Dec;370(12):1235–1244. doi: 10.1515/bchm3.1989.370.2.1235. [DOI] [PubMed] [Google Scholar]
  33. Wollmer A., Rannefeld B., Johansen B. R., Hejnaes K. R., Balschmidt P., Hansen F. B. Phenol-promoted structural transformation of insulin in solution. Biol Chem Hoppe Seyler. 1987 Aug;368(8):903–911. doi: 10.1515/bchm3.1987.368.2.903. [DOI] [PubMed] [Google Scholar]
  34. Yang Y. R., Schachman H. K. Hybridization as a technique for studying interchain interactions in the catalytic trimers of aspartate transcarbamoylase. Anal Biochem. 1987 May 15;163(1):188–195. doi: 10.1016/0003-2697(87)90111-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES