Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1655–1665. doi: 10.1016/S0006-3495(99)77013-X

Swelling studies on the cornea and sclera: the effects of pH and ionic strength.

Y Huang 1, K M Meek 1
PMCID: PMC1300453  PMID: 10465776

Abstract

The biophysical properties of the cornea and sclera depend on the precise maintenance of tissue hydration. We have studied the swelling of the tissues as a function of pH and ionic strength of the bathing medium, using an equilibration technique that prevents the loss of proteoglycans during swelling. Synchrotron x-ray diffraction was used to measure the average intermolecular and interfibrillar spacings, the fibril diameters, and the collagen D-periodicity. We found that both tissues swelled least near pH 4, that higher hydrations were achieved at lower ionic strengths, and that sclera swelled about one-third as much as cornea under most conditions. In the corneal stroma, the interfibrillar spacing increased most with hydration at pH values near 7. Fibril diameters and D-periodicity were independent of tissue hydration and pH at hydrations above 1. Intermolecular spacings in both tissues decreased as the ionic strength was increased, and there was a significant difference between cornea and sclera. Finally, we observed that corneas swollen near pH 7 transmitted significantly more light than those swollen at lower pH levels. The results indicate that the isoelectric points of both tissues are close to pH 4. The effects of ionic strength can be explained in terms of chloride binding within the tissues. The higher light transmission achieved in corneas swollen at neutral pH may be related to the fact that the interfibrillar fluid is more evenly distributed under these conditions.

Full Text

The Full Text of this article is available as a PDF (208.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borcherding M. S., Blacik L. J., Sittig R. A., Bizzell J. W., Breen M., Weinstein H. G. Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp Eye Res. 1975 Jul;21(1):59–70. doi: 10.1016/0014-4835(75)90057-3. [DOI] [PubMed] [Google Scholar]
  2. Cöster L., Fransson L. A. Isolation and characterization of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Jan 1;193(1):143–153. doi: 10.1042/bj1930143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cöster L., Fransson L. A., Sheehan J., Nieduszynski I. A., Phelps C. F. Self-association of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Aug 1;197(2):483–490. doi: 10.1042/bj1970483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOHLMAN C. H., HEDBYS B. O., MISHIMA S. The swelling pressure of the corneal stroma. Invest Ophthalmol. 1962 Apr;1:158–162. [PubMed] [Google Scholar]
  5. Elliott G. F., Goodfellow J. M., Woolgar A. E. Swelling studies of bovine corneal stroma without bounding membranes. J Physiol. 1980 Jan;298:453–470. doi: 10.1113/jphysiol.1980.sp013094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fatt I., Goldstick T. K. Dynamics of water transport in swelling membranes. J Colloid Sci. 1965 Dec;20(9):962–989. doi: 10.1016/0095-8522(65)90068-1. [DOI] [PubMed] [Google Scholar]
  7. Fratzl P., Daxer A. Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study. Biophys J. 1993 Apr;64(4):1210–1214. doi: 10.1016/S0006-3495(93)81487-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fullwood N. J., Tuft S. J., Malik N. S., Meek K. M., Ridgway A. E., Harrison R. J. Synchrotron x-ray diffraction studies of keratoconus corneal stroma. Invest Ophthalmol Vis Sci. 1992 Apr;33(5):1734–1741. [PubMed] [Google Scholar]
  9. Goodfellow J. M., Elliott G. F., Woolgar A. E. X-ray diffraction studies of the corneal stroma. J Mol Biol. 1978 Feb 25;119(2):237–252. doi: 10.1016/0022-2836(78)90436-9. [DOI] [PubMed] [Google Scholar]
  10. HEDBYS B. O., DOHLMAN C. H. A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp Eye Res. 1963 Apr;2:122–129. doi: 10.1016/s0014-4835(63)80003-2. [DOI] [PubMed] [Google Scholar]
  11. Hodson S., Kaila D., Hammond S., Rebello G., al-Omari Y. Transient chloride binding as a contributory factor to corneal stromal swelling in the ox. J Physiol. 1992 May;450:89–103. doi: 10.1113/jphysiol.1992.sp019117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodson S., O'Leary D., Watkins S. The measurement of ox corneal swelling pressure by osmometry. J Physiol. 1991 Mar;434:399–408. doi: 10.1113/jphysiol.1991.sp018476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hodson S. Why the cornea swells. J Theor Biol. 1971 Dec;33(3):419–427. doi: 10.1016/0022-5193(71)90090-7. [DOI] [PubMed] [Google Scholar]
  14. Huang Y., Bron A. J., Meek K. M., Vellodi A., McDonald B. Ultrastructural study of the cornea in a bone marrow-transplanted Hurler syndrome patient. Exp Eye Res. 1996 Apr;62(4):377–387. doi: 10.1006/exer.1996.0043. [DOI] [PubMed] [Google Scholar]
  15. Huang Y., Tuft S. J., Meek K. M. A histochemical and x-ray diffraction study of keratoconus epikeratoplasty. Report of two cases. Cornea. 1996 May;15(3):320–328. doi: 10.1097/00003226-199605000-00016. [DOI] [PubMed] [Google Scholar]
  16. Komai Y., Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991 Jul;32(8):2244–2258. [PubMed] [Google Scholar]
  17. Leikin S., Rau D. C., Parsegian V. A. Direct measurement of forces between self-assembled proteins: temperature-dependent exponential forces between collagen triple helices. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):276–280. doi: 10.1073/pnas.91.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meek K. M., Fullwood N. J., Cooke P. H., Elliott G. F., Maurice D. M., Quantock A. J., Wall R. S., Worthington C. R. Synchrotron x-ray diffraction studies of the cornea, with implications for stromal hydration. Biophys J. 1991 Aug;60(2):467–474. doi: 10.1016/S0006-3495(91)82073-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meek K. M., Leonard D. W. Ultrastructure of the corneal stroma: a comparative study. Biophys J. 1993 Jan;64(1):273–280. doi: 10.1016/S0006-3495(93)81364-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Midelfart A. Swelling pressure in bovine cornea determined by dialysis method. Acta Ophthalmol (Copenh) 1987 Apr;65(2):153–158. doi: 10.1111/j.1755-3768.1987.tb06994.x. [DOI] [PubMed] [Google Scholar]
  21. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  22. Pirie A. The action of mustard gas on ox cornea collagen. Biochem J. 1947;41(2):185–190. doi: 10.1042/bj0410185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sayers Z., Koch M. H., Whitburn S. B., Meek K. M., Elliott G. F., Harmsen A. Synchrotron x-ray diffraction study of corneal stroma. J Mol Biol. 1982 Oct 5;160(4):593–607. doi: 10.1016/0022-2836(82)90317-5. [DOI] [PubMed] [Google Scholar]
  24. Worthington C. R. The structure of cornea. Q Rev Biophys. 1984 Nov;17(4):423–451. doi: 10.1017/s003358350000487x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES