Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Sep;77(3):1683–1693. doi: 10.1016/S0006-3495(99)77015-3

Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy.

H A Rinia 1, R A Demel 1, J P van der Eerden 1, B de Kruijff 1
PMCID: PMC1300455  PMID: 10465778

Abstract

Asymmetric bilayers of different phospholipid compositions have been prepared by the Langmuir-Blodgett (L-B) method, and imaged by atomic force microscopy (AFM). Such bilayers can function as a model for biological membranes. The first leaflet consisted of zwitterionic phospholipids phosphatidylcholine (PC) or phosphatidylethanolamine (PE). The second leaflet consisted of the anionic phospholipid phosphatidylglycerol (PG), in either the condensed or liquid phase or, for comparison, of PC. Different bilayers showed different morphology. In all bilayers defects in the form of holes were present. In some bilayers with a first leaflet consisting of PC, polygonal line-shaped defects were observed, whereas when the first leaflet consisted of PE, mainly round defects were seen. Not only the shape, but also the amount of defects varied, depending on the condition and the composition of the second leaflet. In most of the PG-containing systems the defects were surrounded by elevations, which reversibly disappeared in the presence of divalent cations. This is the first time that such elevations have been observed on phospholipid bilayers. We propose that they are induced by phospholipid exchange between the two leaflets around the defects, leading to the presence of negatively charged phospholipids in the first leaflet. Because the substrate is also negatively charged, the bilayer around the edges is repelled and lifted up. Since it was found that the elevations are indeed detached from the substrate, we refer to this effect as bilayer blistering.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann M., Nollert P., Kolb H. A. Manipulation and molecular resolution of a phosphatidylcholine-supported planar bilayer by atomic force microscopy. J Membr Biol. 1998 Feb 1;161(3):227–233. doi: 10.1007/s002329900329. [DOI] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Breukink E., Demel R. A., de Korte-Kool G., de Kruijff B. SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry. 1992 Feb 4;31(4):1119–1124. doi: 10.1021/bi00119a021. [DOI] [PubMed] [Google Scholar]
  4. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Czajkowsky D. M., Huang C., Shao Z. Ripple phase in asymmetric unilamellar bilayers with saturated and unsaturated phospholipids. Biochemistry. 1995 Oct 3;34(39):12501–12505. doi: 10.1021/bi00039a003. [DOI] [PubMed] [Google Scholar]
  6. De Kruijff B., Van Zoelen E. J. Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim Biophys Acta. 1978 Jul 20;511(1):105–115. doi: 10.1016/0005-2736(78)90068-8. [DOI] [PubMed] [Google Scholar]
  7. Demel R. A. Monomolecular layers in the study of biomembranes. Subcell Biochem. 1994;23:83–120. doi: 10.1007/978-1-4615-1863-1_3. [DOI] [PubMed] [Google Scholar]
  8. Engel A. Biological applications of scanning probe microscopes. Annu Rev Biophys Biophys Chem. 1991;20:79–108. doi: 10.1146/annurev.bb.20.060191.000455. [DOI] [PubMed] [Google Scholar]
  9. Engel A., Schoenenberger C. A., Müller D. J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struct Biol. 1997 Apr;7(2):279–284. doi: 10.1016/s0959-440x(97)80037-1. [DOI] [PubMed] [Google Scholar]
  10. Fang Y., Yang J. The growth of bilayer defects and the induction of interdigitated domains in the lipid-loss process of supported phospholipid bilayers. Biochim Biophys Acta. 1997 Mar 13;1324(2):309–319. doi: 10.1016/s0005-2736(96)00236-2. [DOI] [PubMed] [Google Scholar]
  11. Grandbois M., Clausen-Schaumann H., Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  13. Hauser H., Pascher I., Pearson R. H., Sundell S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta. 1981 Jun 16;650(1):21–51. doi: 10.1016/0304-4157(81)90007-1. [DOI] [PubMed] [Google Scholar]
  14. Hoh J. H., Sosinsky G. E., Revel J. P., Hansma P. K. Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys J. 1993 Jul;65(1):149–163. doi: 10.1016/S0006-3495(93)81074-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hui S. W., Viswanathan R., Zasadzinski J. A., Israelachvili J. N. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys J. 1995 Jan;68(1):171–178. doi: 10.1016/S0006-3495(95)80172-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karrasch S., Hegerl R., Hoh J. H., Baumeister W., Engel A. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):836–838. doi: 10.1073/pnas.91.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lal R., John S. A. Biological applications of atomic force microscopy. Am J Physiol. 1994 Jan;266(1 Pt 1):C1–21. doi: 10.1152/ajpcell.1994.266.1.C1. [DOI] [PubMed] [Google Scholar]
  18. Mou J., Czajkowsky D. M., Shao Z. Gramicidin A aggregation in supported gel state phosphatidylcholine bilayers. Biochemistry. 1996 Mar 12;35(10):3222–3226. doi: 10.1021/bi9520242. [DOI] [PubMed] [Google Scholar]
  19. Mou J., Yang J., Huang C., Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry. 1994 Aug 23;33(33):9981–9985. doi: 10.1021/bi00199a022. [DOI] [PubMed] [Google Scholar]
  20. Mou J., Yang J., Shao Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol. 1995 May 5;248(3):507–512. doi: 10.1006/jmbi.1995.0238. [DOI] [PubMed] [Google Scholar]
  21. Mou J., Yang J., Shao Z. Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers. Biochemistry. 1994 Apr 19;33(15):4439–4443. doi: 10.1021/bi00181a001. [DOI] [PubMed] [Google Scholar]
  22. Müller D. J., Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J. 1997 Sep;73(3):1633–1644. doi: 10.1016/S0006-3495(97)78195-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yang J., Tamm L. K., Tillack T. W., Shao Z. New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. J Mol Biol. 1993 Jan 20;229(2):286–290. doi: 10.1006/jmbi.1993.1033. [DOI] [PubMed] [Google Scholar]
  25. Zasadzinski J. A., Helm C. A., Longo M. L., Weisenhorn A. L., Gould S. A., Hansma P. K. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys J. 1991 Mar;59(3):755–760. doi: 10.1016/S0006-3495(91)82288-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Klompenburg W., de Kruijff B. The role of anionic lipids in protein insertion and translocation in bacterial membranes. J Membr Biol. 1998 Mar 1;162(1):1–7. doi: 10.1007/s002329900336. [DOI] [PubMed] [Google Scholar]
  27. von Nahmen A., Schenk M., Sieber M., Amrein M. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J. 1997 Jan;72(1):463–469. doi: 10.1016/S0006-3495(97)78687-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES