Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):1811–1823. doi: 10.1016/S0006-3495(99)77026-8

Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli?

M Postma 1, J Oberwinkler 1, D G Stavenga 1
PMCID: PMC1300466  PMID: 10512805

Abstract

The quantum bump, the elementary event of fly phototransduction induced by the absorption of a single photon, is a small, transient current due to the opening of cation-channels permeable to Ca2+. These channels are located in small, tube-like protrusions of the cell membrane, the microvilli. Using a modeling approach, we calculate the changes of free Ca2+ concentration inside the microvilli, taking into account influx and diffusion of Ca2+. Independent of permeability ratios and Ca2+ buffering, we find that the free Ca2+ concentrations rise to millimolar values, as long as we assume that all activated channels are located in a single microvillus. When we assume that as much as 25 microvilli participate in a single bump, the free Ca2+ concentration still reaches values higher than 80 microM. These very high concentrations show that the microvilli of fly photoreceptors are unique structures in which the Ca2+ signaling is even more extreme than in calcium concentration microdomains very close to Ca2+ channels.

Full Text

The Full Text of this article is available as a PDF (263.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya J. K., Jalink K., Hardy R. W., Hartenstein V., Zuker C. S. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron. 1997 Jun;18(6):881–887. doi: 10.1016/s0896-6273(00)80328-1. [DOI] [PubMed] [Google Scholar]
  2. Adamski F. M., Zhu M. Y., Bahiraei F., Shieh B. H. Interaction of eye protein kinase C and INAD in Drosophila. Localization of binding domains and electrophysiological characterization of a loss of association in transgenic flies. J Biol Chem. 1998 Jul 10;273(28):17713–17719. doi: 10.1074/jbc.273.28.17713. [DOI] [PubMed] [Google Scholar]
  3. Aharon S., Parnas H., Parnas I. The magnitude and significance of Ca2+ domains for release of neurotransmitter. Bull Math Biol. 1994 Nov;56(6):1095–1119. doi: 10.1007/BF02460288. [DOI] [PubMed] [Google Scholar]
  4. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Neuronal calcium signaling. Neuron. 1998 Jul;21(1):13–26. doi: 10.1016/s0896-6273(00)80510-3. [DOI] [PubMed] [Google Scholar]
  6. Boschek C. B. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch Mikrosk Anat. 1971;118(3):369–409. doi: 10.1007/BF00331193. [DOI] [PubMed] [Google Scholar]
  7. Chevesich J., Kreuz A. J., Montell C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron. 1997 Jan;18(1):95–105. doi: 10.1016/s0896-6273(01)80049-0. [DOI] [PubMed] [Google Scholar]
  8. Chyb S., Raghu P., Hardie R. C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature. 1999 Jan 21;397(6716):255–259. doi: 10.1038/16703. [DOI] [PubMed] [Google Scholar]
  9. Denk W., Holt J. R., Shepherd G. M., Corey D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron. 1995 Dec;15(6):1311–1321. doi: 10.1016/0896-6273(95)90010-1. [DOI] [PubMed] [Google Scholar]
  10. Dorlöchter M., Stieve H. The Limulus ventral photoreceptor: light response and the role of calcium in a classic preparation. Prog Neurobiol. 1997 Nov;53(4):451–515. doi: 10.1016/s0301-0082(97)00046-4. [DOI] [PubMed] [Google Scholar]
  11. Gerster U. A quantitative estimate of flash-induced Ca(2+)- and Na(+)-influx and Na+/Ca(2+)-exchange in blowfly Calliphora photoreceptors. Vision Res. 1997 Sep;37(18):2477–2485. doi: 10.1016/s0042-6989(97)00079-5. [DOI] [PubMed] [Google Scholar]
  12. Hall J. D., Betarbet S., Jaramillo F. Endogenous buffers limit the spread of free calcium in hair cells. Biophys J. 1997 Sep;73(3):1243–1252. doi: 10.1016/S0006-3495(97)78157-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hardie R. C. INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci. 1996 May 1;16(9):2924–2933. doi: 10.1523/JNEUROSCI.16-09-02924.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardie R. C., Minke B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol. 1994 Mar;103(3):409–427. doi: 10.1085/jgp.103.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardie R. C., Minke B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium. 1995 Oct;18(4):256–274. doi: 10.1016/0143-4160(95)90023-3. [DOI] [PubMed] [Google Scholar]
  16. Hardie R. C., Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992 Apr;8(4):643–651. doi: 10.1016/0896-6273(92)90086-s. [DOI] [PubMed] [Google Scholar]
  17. Hardie R. C., Mojet M. H. Magnesium-dependent block of the light-activated and trp-dependent conductance in Drosophila photoreceptors. J Neurophysiol. 1995 Dec;74(6):2590–2599. doi: 10.1152/jn.1995.74.6.2590. [DOI] [PubMed] [Google Scholar]
  18. Hardie R. C., Peretz A., Suss-Toby E., Rom-Glas A., Bishop S. A., Selinger Z., Minke B. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature. 1993 Jun 17;363(6430):634–637. doi: 10.1038/363634a0. [DOI] [PubMed] [Google Scholar]
  19. Hardie R. C. Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors. J Neurosci. 1995 Jan;15(1 Pt 2):889–902. doi: 10.1523/JNEUROSCI.15-01-00889.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hofstee C. A., Henderson S., Hardie R. C., Stavenga D. G. Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors. Vis Neurosci. 1996 Sep-Oct;13(5):897–906. doi: 10.1017/s0952523800009147. [DOI] [PubMed] [Google Scholar]
  21. Howard J., Blakeslee B., Laughlin S. B. The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415–435. doi: 10.1098/rspb.1987.0053. [DOI] [PubMed] [Google Scholar]
  22. Huber A., Sander P., Bähner M., Paulsen R. The TRP Ca2+ channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett. 1998 Mar 27;425(2):317–322. doi: 10.1016/s0014-5793(98)00248-8. [DOI] [PubMed] [Google Scholar]
  23. Huber A., Sander P., Gobert A., Bähner M., Hermann R., Paulsen R. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 1996 Dec 16;15(24):7036–7045. [PMC free article] [PubMed] [Google Scholar]
  24. Huber A., Sander P., Paulsen R. Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. J Biol Chem. 1996 May 17;271(20):11710–11717. doi: 10.1074/jbc.271.20.11710. [DOI] [PubMed] [Google Scholar]
  25. Koch C., Zador A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci. 1993 Feb;13(2):413–422. doi: 10.1523/JNEUROSCI.13-02-00413.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  27. Li H. S., Porter J. A., Montell C. Requirement for the NINAC kinase/myosin for stable termination of the visual cascade. J Neurosci. 1998 Dec 1;18(23):9601–9606. doi: 10.1523/JNEUROSCI.18-23-09601.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Llinás R., Sugimori M., Silver R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science. 1992 May 1;256(5057):677–679. doi: 10.1126/science.1350109. [DOI] [PubMed] [Google Scholar]
  29. Llinás R., Sugimori M., Silver R. B. The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology. 1995 Nov;34(11):1443–1451. doi: 10.1016/0028-3908(95)00150-5. [DOI] [PubMed] [Google Scholar]
  30. Luby-Phelps K., Hori M., Phelps J. M., Won D. Ca(2+)-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem. 1995 Sep 15;270(37):21532–21538. doi: 10.1074/jbc.270.37.21532. [DOI] [PubMed] [Google Scholar]
  31. Lumpkin E. A., Hudspeth A. J. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10297–10301. doi: 10.1073/pnas.92.22.10297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin S. R., Maune J. F., Beckingham K., Bayley P. M. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Eur J Biochem. 1992 May 1;205(3):1107–1114. doi: 10.1111/j.1432-1033.1992.tb16879.x. [DOI] [PubMed] [Google Scholar]
  33. Maune J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. J Biol Chem. 1992 Mar 15;267(8):5286–5295. [PubMed] [Google Scholar]
  34. McLaughlin S., Brown J. Diffusion of calcium ions in retinal rods. A theoretical calculation. J Gen Physiol. 1981 Apr;77(4):475–487. doi: 10.1085/jgp.77.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Montell C. TRP trapped in fly signaling web. Curr Opin Neurobiol. 1998 Jun;8(3):389–397. doi: 10.1016/s0959-4388(98)80066-4. [DOI] [PubMed] [Google Scholar]
  37. Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
  38. Niemeyer B. A., Suzuki E., Scott K., Jalink K., Zuker C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell. 1996 May 31;85(5):651–659. doi: 10.1016/s0092-8674(00)81232-5. [DOI] [PubMed] [Google Scholar]
  39. Oberwinkler J., Stavenga D. G. Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo. J Gen Physiol. 1998 Aug;112(2):113–124. doi: 10.1085/jgp.112.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Paulsen R., Zinkler D., Delmelle M. Architecture and dynamics of microvillar photoreceptor membranes of a cephalopod. Exp Eye Res. 1983 Jan;36(1):47–56. doi: 10.1016/0014-4835(83)90088-x. [DOI] [PubMed] [Google Scholar]
  41. Payne R., Corson D. W., Fein A. Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors. J Gen Physiol. 1986 Jul;88(1):107–126. doi: 10.1085/jgp.88.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Petrozzino J. J., Pozzo Miller L. D., Connor J. A. Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron. 1995 Jun;14(6):1223–1231. doi: 10.1016/0896-6273(95)90269-4. [DOI] [PubMed] [Google Scholar]
  43. Porter J. A., Minke B., Montell C. Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J. 1995 Sep 15;14(18):4450–4459. doi: 10.1002/j.1460-2075.1995.tb00124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Porter J. A., Yu M., Doberstein S. K., Pollard T. D., Montell C. Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science. 1993 Nov 12;262(5136):1038–1042. doi: 10.1126/science.8235618. [DOI] [PubMed] [Google Scholar]
  45. Ranganathan R., Bacskai B. J., Tsien R. Y., Zuker C. S. Cytosolic calcium transients: spatial localization and role in Drosophila photoreceptor cell function. Neuron. 1994 Oct;13(4):837–848. doi: 10.1016/0896-6273(94)90250-x. [DOI] [PubMed] [Google Scholar]
  46. Ranganathan R., Harris G. L., Stevens C. F., Zuker C. S. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature. 1991 Nov 21;354(6350):230–232. doi: 10.1038/354230a0. [DOI] [PubMed] [Google Scholar]
  47. Reuss H., Mojet M. H., Chyb S., Hardie R. C. In vivo analysis of the drosophila light-sensitive channels, TRP and TRPL. Neuron. 1997 Dec;19(6):1249–1259. doi: 10.1016/s0896-6273(00)80416-x. [DOI] [PubMed] [Google Scholar]
  48. Roberts W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci. 1994 May;14(5 Pt 2):3246–3262. doi: 10.1523/JNEUROSCI.14-05-03246.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sala F., Hernández-Cruz A. Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J. 1990 Feb;57(2):313–324. doi: 10.1016/S0006-3495(90)82533-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Scott K., Sun Y., Beckingham K., Zuker C. S. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell. 1997 Oct 31;91(3):375–383. doi: 10.1016/s0092-8674(00)80421-3. [DOI] [PubMed] [Google Scholar]
  51. Scott K., Zuker C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature. 1998 Oct 22;395(6704):805–808. doi: 10.1038/27448. [DOI] [PubMed] [Google Scholar]
  52. Scott K., Zuker C. TRP, TRPL and trouble in photoreceptor cells. Curr Opin Neurobiol. 1998 Jun;8(3):383–388. doi: 10.1016/s0959-4388(98)80065-2. [DOI] [PubMed] [Google Scholar]
  53. Shieh B. H., Niemeyer B. A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron. 1995 Jan;14(1):201–210. doi: 10.1016/0896-6273(95)90255-4. [DOI] [PubMed] [Google Scholar]
  54. Shieh B. H., Zhu M. Y., Lee J. K., Kelly I. M., Bahiraei F. Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12682–12687. doi: 10.1073/pnas.94.23.12682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Shieh B. H., Zhu M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron. 1996 May;16(5):991–998. doi: 10.1016/s0896-6273(00)80122-1. [DOI] [PubMed] [Google Scholar]
  56. Suzuki E., Katayama E., Hirosawa K. Structure of photoreceptive membranes of Drosophila compound eyes as studied by quick-freezing electron microscopy. J Electron Microsc (Tokyo) 1993 Jun;42(3):178–184. [PubMed] [Google Scholar]
  57. Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
  58. Ukhanov K., Payne R. Light activated calcium release in Limulus ventral photoreceptors as revealed by laser confocal microscopy. Cell Calcium. 1995 Oct;18(4):301–313. doi: 10.1016/0143-4160(95)90026-8. [DOI] [PubMed] [Google Scholar]
  59. Ukhanov K., Payne R. Rapid coupling of calcium release to depolarization in Limulus polyphemus ventral photoreceptors as revealed by microphotolysis and confocal microscopy. J Neurosci. 1997 Mar 1;17(5):1701–1709. doi: 10.1523/JNEUROSCI.17-05-01701.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Warr C. G., Kelly L. E. Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem J. 1996 Mar 1;314(Pt 2):497–503. doi: 10.1042/bj3140497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wong F., Knight B. W., Dodge F. A. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol. 1982 Jun;79(6):1089–1113. doi: 10.1085/jgp.79.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wu C. F., Pak W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J Gen Physiol. 1978 Mar;71(3):249–268. doi: 10.1085/jgp.71.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. van Huizen R., Miller K., Chen D. M., Li Y., Lai Z. C., Raab R. W., Stark W. S., Shortridge R. D., Li M. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J. 1998 Apr 15;17(8):2285–2297. doi: 10.1093/emboj/17.8.2285. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES