Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):1927–1935. doi: 10.1016/S0006-3495(99)77034-7

Steric interactions of valines 1, 5, and 7 in [valine 5, D-alanine 8] gramicidin A channels.

A R Jude 1, D V Greathouse 1, M C Leister 1, R E Koeppe 2nd 1
PMCID: PMC1300474  PMID: 10512813

Abstract

When the central valine residues 6, 7, and 8 of gramicidin A (gA) are shifted by one position, the resulting [Val(5), D-Ala(8)]gA forms right-handed channels with a single-channel conductance and average duration somewhat less than gA channels. The reduction in channel duration has been attributed to steric conflict between the side chains of Val(1) and Val(5) in opposing monomers (Koeppe, R. E. II, D. V. Greathouse, A. Jude, G. Saberwal, L. L. Providence, and O. S. Andersen. 1994. J. Biol. Chem. 269:12567-12576). To investigate the orientations and motions of valines in [Val(5), D-Ala(8)]gA, we have incorporated (2)H labels at Val 1, 5, or 7 and recorded (2)H-NMR spectra of oriented and nonoriented samples in hydrated dimyristoylphosphatidylcholine. Spectra of nonoriented samples at 4 degrees C reveal powder patterns that indicate rapid side chain "hopping" for Val(5), and an intermediate rate of hopping for Val(1) and Val(7) that is somewhat slower than in gA. Oriented samples of deuterated Val(1) and Val(7) show large changes in the methyl and C(beta)-(2)H quadrupolar splittings (Deltanu(q)) when Ala(5) in native gA is changed to Val(5). Three or more peaks for the Val(1) methyls with Deltanu(q) values that vary with the echo delay, together with an intermediate spectrum for nonoriented samples at 4 degrees C, suggest unusual side chain dynamics for Val(1) in [Val(5), D-Ala(8)]gA. These results are consistent with a steric conflict that has been introduced between the two opposing monomers. In contrast, the acylation of gA has little influence on the side chain dynamics of Val(1), regardless of the identity of residue 5.

Full Text

The Full Text of this article is available as a PDF (154.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Manan N., Hinton J. F. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy. Biochemistry. 1994 Jun 7;33(22):6773–6783. doi: 10.1021/bi00188a005. [DOI] [PubMed] [Google Scholar]
  2. Andersen O. S., Koeppe R. E., 2nd Molecular determinants of channel function. Physiol Rev. 1992 Oct;72(4 Suppl):S89–158. doi: 10.1152/physrev.1992.72.suppl_4.S89. [DOI] [PubMed] [Google Scholar]
  3. Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
  4. Becker M. D., Koeppe R. E., 2nd, Andersen O. S. Amino acid substitutions and ion channel function. Model-dependent conclusions. Biophys J. 1992 Apr;62(1):25–27. doi: 10.1016/S0006-3495(92)81767-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cornell B. Gramicidin A--phospholipid model systems. J Bioenerg Biomembr. 1987 Dec;19(6):655–676. doi: 10.1007/BF00762301. [DOI] [PubMed] [Google Scholar]
  6. Cotten M., Fu R., Cross T. A. Solid-state NMR and hydrogen-deuterium exchange in a bilayer-solubilized peptide: structural and mechanistic implications. Biophys J. 1999 Mar;76(3):1179–1189. doi: 10.1016/S0006-3495(99)77282-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Durkin J. T., Koeppe R. E., 2nd, Andersen O. S. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J Mol Biol. 1990 Jan 5;211(1):221–234. doi: 10.1016/0022-2836(90)90022-E. [DOI] [PubMed] [Google Scholar]
  8. Greathouse D. V., Koeppe R. E., 2nd, Providence L. L., Shobana S., Andersen O. S. Design and characterization of gramicidin channels. Methods Enzymol. 1999;294:525–550. doi: 10.1016/s0076-6879(99)94031-4. [DOI] [PubMed] [Google Scholar]
  9. Hing A. W., Adams S. P., Silbert D. F., Norberg R. E. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers. Biochemistry. 1990 May 1;29(17):4144–4156. doi: 10.1021/bi00469a018. [DOI] [PubMed] [Google Scholar]
  10. Jude A. R., Greathouse D. V., Koeppe R. E., 2nd, Providence L. L., Andersen O. S. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans. Biochemistry. 1999 Jan 19;38(3):1030–1039. doi: 10.1021/bi982043m. [DOI] [PubMed] [Google Scholar]
  11. Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
  12. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  13. Killian J. A., Taylor M. J., Koeppe R. E., 2nd Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A 2H NMR study. Biochemistry. 1992 Nov 24;31(46):11283–11290. doi: 10.1021/bi00161a004. [DOI] [PubMed] [Google Scholar]
  14. Koeppe R. E., 2nd, Anderson O. S. Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct. 1996;25:231–258. doi: 10.1146/annurev.bb.25.060196.001311. [DOI] [PubMed] [Google Scholar]
  15. Koeppe R. E., 2nd, Greathouse D. V., Jude A., Saberwal G., Providence L. L., Andersen O. S. Helix sense of gramicidin channels as a "nonlocal" function of the primary sequence. J Biol Chem. 1994 Apr 29;269(17):12567–12576. [PubMed] [Google Scholar]
  16. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koeppe R. E., 2nd, Killian J. A., Vogt T. C., de Kruijff B., Taylor M. J., Mattice G. L., Greathouse D. V. Palmitoylation-induced conformational changes of specific side chains in the gramicidin transmembrane channel. Biochemistry. 1995 Jul 25;34(29):9299–9306. doi: 10.1021/bi00029a004. [DOI] [PubMed] [Google Scholar]
  18. Koeppe R. E., 2nd, Paczkowski J. A., Whaley W. L. Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry. 1985 Jun 4;24(12):2822–2826. doi: 10.1021/bi00333a002. [DOI] [PubMed] [Google Scholar]
  19. Koeppe R. E., 2nd, Providence L. L., Greathouse D. V., Heitz F., Trudelle Y., Purdie N., Andersen O. S. On the helix sense of gramicidin A single channels. Proteins. 1992 Jan;12(1):49–62. doi: 10.1002/prot.340120107. [DOI] [PubMed] [Google Scholar]
  20. Koeppe R. E., 2nd, Vogt T. C., Greathouse D. V., Killian J. A., de Kruijff B. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine. Biochemistry. 1996 Mar 19;35(11):3641–3648. doi: 10.1021/bi952046o. [DOI] [PubMed] [Google Scholar]
  21. Langs D. A. Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science. 1988 Jul 8;241(4862):188–191. doi: 10.1126/science.2455345. [DOI] [PubMed] [Google Scholar]
  22. Lee K. C., Cross T. A. Side-chain structure and dynamics at the lipid-protein interface: Val1 of the gramicidin A channel. Biophys J. 1994 May;66(5):1380–1387. doi: 10.1016/S0006-3495(94)80928-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee K. C., Hu W., Cross T. A. 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J. 1993 Sep;65(3):1162–1167. doi: 10.1016/S0006-3495(93)81150-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee K. C., Huo S., Cross T. A. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995 Jan 24;34(3):857–867. doi: 10.1021/bi00003a020. [DOI] [PubMed] [Google Scholar]
  25. Nicholson L. K., Moll F., Mixon T. E., LoGrasso P. V., Lay J. C., Cross T. A. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'. Biochemistry. 1987 Oct 20;26(21):6621–6626. doi: 10.1021/bi00395a009. [DOI] [PubMed] [Google Scholar]
  26. O'Connell A. M., Koeppe R. E., 2nd, Andersen O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 1990 Nov 30;250(4985):1256–1259. doi: 10.1126/science.1700867. [DOI] [PubMed] [Google Scholar]
  27. Prosser R. S., Davis J. H., Dahlquist F. W., Lindorfer M. A. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry. 1991 May 14;30(19):4687–4696. doi: 10.1021/bi00233a008. [DOI] [PubMed] [Google Scholar]
  28. Providence L. L., Andersen O. S., Greathouse D. V., Koeppe R. E., 2nd, Bittman R. Gramicidin channel function does not depend on phospholipid chirality. Biochemistry. 1995 Dec 19;34(50):16404–16411. doi: 10.1021/bi00050a022. [DOI] [PubMed] [Google Scholar]
  29. SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
  30. Salom D., Bañ M. C., Braco L., Abad C. HPLC demonstration that an all Trp-->Phe replacement in gramicidin A results in a conformational rearrangement from beta-helical monomer to double-stranded dimer in model membranes. Biochem Biophys Res Commun. 1995 Apr 17;209(2):466–473. doi: 10.1006/bbrc.1995.1525. [DOI] [PubMed] [Google Scholar]
  31. Salom D., Pérez-Payá E., Pascal J., Abad C. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes. Biochemistry. 1998 Oct 6;37(40):14279–14291. doi: 10.1021/bi980733k. [DOI] [PubMed] [Google Scholar]
  32. Wallace B. A., Ravikumar K. The gramicidin pore: crystal structure of a cesium complex. Science. 1988 Jul 8;241(4862):182–187. doi: 10.1126/science.2455344. [DOI] [PubMed] [Google Scholar]
  33. Wallace B. A., Veatch W. R., Blout E. R. Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry. 1981 Sep 29;20(20):5754–5760. doi: 10.1021/bi00523a018. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES