Abstract
Effects of ruthenium red (RR) on the slow Ca(2+)-activated Ca(2+)-permeable vacuolar channel have been studied by patch-clamp technique. Applied to the cytosolic side of isolated membrane patches, RR at concentrations of 0.1-5 microM produced two distinct effects on single channel kinetics, long lasting closures and a flickering block of the open state. The first effect was largely irreversible, whereas the second one could be washed out. The extent of flickering block steeply increased (zdelta = approximately 1.35) with the increase of cytosol-positive voltage, dragging RR into the channel pore. At least two RR ions are involved in the block according to Hill coefficient n = approximately 1.30 for the dose response curves. The on-rate rate of the drug binding linearly depended on the RR concentration, implying that one RR ion already plugged the pore. The blocked state was further stabilized by binding of the second RR. This stabilization was in excess of that predicted by independent binding as the dependence of unblocking rate on RR concentration revealed. A cooperative model was therefore employed to describe the kinetic behavior of RR binding. At zero voltage the half-blocking RR concentration of 36 microM and the bimolecular on-rate constant of 1.8 x 10(8) M(-1) s(-1) were estimated.
Full Text
The Full Text of this article is available as a PDF (116.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amann R., Maggi C. A. Ruthenium red as a capsaicin antagonist. Life Sci. 1991;49(12):849–856. doi: 10.1016/0024-3205(91)90169-c. [DOI] [PubMed] [Google Scholar]
- Bauer CS, Plieth C, Bethmann B, Popescu O, Hansen UP, Simonis W, Schonknecht G. Strontium-induced repetitive calcium spikes in a unicellular green alga . Plant Physiol. 1998 Jun;117(2):545–557. doi: 10.1104/pp.117.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertl A., Blumwald E., Coronado R., Eisenberg R., Findlay G., Gradmann D., Hille B., Köhler K., Kolb H. A., MacRobbie E. Electrical measurements on endomembranes. Science. 1992 Nov 6;258(5084):873–874. doi: 10.1126/science.1439795. [DOI] [PubMed] [Google Scholar]
- Bethmann B., Thaler M., Simonis W., Schonknecht G. Electrochemical Potential Gradients of H+, K+, Ca2+, and Cl- across the Tonoplast of the Green Alga Eremosphaera Viridis. Plant Physiol. 1995 Dec;109(4):1317–1326. doi: 10.1104/pp.109.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobrovinskaya O. R., Muñiz J., Pottosin I. I. Inhibition of vacuolar ion channels by polyamines. J Membr Biol. 1999 Jan 15;167(2):127–140. doi: 10.1007/s002329900477. [DOI] [PubMed] [Google Scholar]
- Gomis A., Gutierrez L. M., Sala F., Viniegra S., Reig J. A. Ruthenium red inhibits selectively chromaffin cell calcium channels. Biochem Pharmacol. 1994 Jan 20;47(2):225–231. doi: 10.1016/0006-2952(94)90010-8. [DOI] [PubMed] [Google Scholar]
- Hamilton M. G., Lundy P. M. Effect of ruthenium red on voltage-sensitive Ca++ channels. J Pharmacol Exp Ther. 1995 May;273(2):940–947. [PubMed] [Google Scholar]
- Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
- Ma J. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle. J Gen Physiol. 1993 Dec;102(6):1031–1056. doi: 10.1085/jgp.102.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma L., Michel W. C. Drugs affecting phospholipase C-mediated signal transduction block the olfactory cyclic nucleotide-gated current of adult zebrafish. J Neurophysiol. 1998 Mar;79(3):1183–1192. doi: 10.1152/jn.1998.79.3.1183. [DOI] [PubMed] [Google Scholar]
- Malécot C. O., Bito V., Argibay J. A. Ruthenium red as an effective blocker of calcium and sodium currents in guinea-pig isolated ventricular heart cells. Br J Pharmacol. 1998 Jun;124(3):465–472. doi: 10.1038/sj.bjp.0701854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuoka H., Ito M., Nakano T., Naka M., Tanaka T. Effects of ruthenium red on activation of Ca2(+)-dependent cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1990 May 31;169(1):315–322. doi: 10.1016/0006-291x(90)91470-d. [DOI] [PubMed] [Google Scholar]
- Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
- Price A. H., Taylor A., Ripley S. J., Griffiths A., Trewavas A. J., Knight M. R. Oxidative Signals in Tobacco Increase Cytosolic Calcium. Plant Cell. 1994 Sep;6(9):1301–1310. doi: 10.1105/tpc.6.9.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
- Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sukhareva M., Morrissette J., Coronado R. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle. Biophys J. 1994 Aug;67(2):751–765. doi: 10.1016/S0006-3495(94)80536-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward J. M., Schroeder J. I. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure. Plant Cell. 1994 May;6(5):669–683. doi: 10.1105/tpc.6.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiser T., Bentrup F. W. Pharmacology of the SV channel in the vacuolar membrane of Chenopodium rubrum suspension cells. J Membr Biol. 1993 Oct;136(1):43–54. doi: 10.1007/BF00241488. [DOI] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]