Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2024–2034. doi: 10.1016/S0006-3495(99)77043-8

Lipid composition determines the effects of arbutin on the stability of membranes.

D K Hincha 1, A E Oliver 1, J H Crowe 1
PMCID: PMC1300483  PMID: 10512822

Abstract

Arbutin (hydroquinone-beta-D-glucopyranoside) is an abundant solute in the leaves of many freezing- or desiccation-tolerant plants. Its physiological role in plants, however, is not known. Here we show that arbutin protects isolated spinach (Spinacia oleracea L.) thylakoid membranes from freeze-thaw damage. During freezing of liposomes, the presence of only 20 mM arbutin led to complete leakage of a soluble marker from egg PC (EPC) liposomes. When the nonbilayer-forming chloroplast lipid monogalactosyldiacylglycerol (MGDG) was included in the membranes, this leakage was prevented. Inclusion of more than 15% MGDG into the membranes led to a strong destabilization of liposomes during freezing. Under these conditions arbutin became a cryoprotectant, as only 5 mM arbutin reduced leakage from 75% to 20%. The nonbilayer lipid egg phosphatidylethanolamine (EPE) had an effect similar to that of MGDG, but was much less effective, even at concentrations up to 80% in EPC membranes. Arbutin-induced leakage during freezing was accompanied by massive bilayer fusion in EPC and EPC/EPE membranes. Twenty percent MGDG in EPC bilayers completely inhibited the fusogenic effect of arbutin. The membrane surface probes merocyanine 540 and 2-(6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosph ocholi ne (NBD-C(6)-HPC) revealed that arbutin reduced the ability of both probes to partition into the membranes. Steady-state anisotropy measurements with probes that localize at different positions in the membranes showed that headgroup mobility was increased in the presence of arbutin, whereas the mobility of the fatty acyl chains close to the glycerol backbone was reduced. This reduction, however, was not seen in membranes containing 20% MGDG. The effect of arbutin on lipid order was limited to the interfacial region of the membranes and was not evident in the hydrophobic core region. From these data we were able to derive a physical model of the perturbing or nonperturbing interactions of arbutin with lipid bilayers.

Full Text

The Full Text of this article is available as a PDF (156.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakaltcheva I., Williams W. P., Schmitt J. M., Hincha D. K. The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute. Biochim Biophys Acta. 1994 Jan 3;1189(1):38–44. doi: 10.1016/0005-2736(94)90277-1. [DOI] [PubMed] [Google Scholar]
  2. Crowe J. H., Hoekstra F. A., Crowe L. M. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–599. doi: 10.1146/annurev.ph.54.030192.003051. [DOI] [PubMed] [Google Scholar]
  3. Engel L. W., Prendergast F. G. Values for and significance of order parameters and "cone angles" of fluorophore rotation in lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7338–7345. doi: 10.1021/bi00529a003. [DOI] [PubMed] [Google Scholar]
  4. Hincha D. K., Crowe J. H. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta. 1996 Oct 23;1284(2):162–170. doi: 10.1016/s0005-2736(96)00122-8. [DOI] [PubMed] [Google Scholar]
  5. Hincha D. K., Oliver A. E., Crowe J. H. The effects of chloroplast lipids on the stability of liposomes during freezing and drying. Biochim Biophys Acta. 1998 Jan 5;1368(1):150–160. doi: 10.1016/s0005-2736(97)00204-6. [DOI] [PubMed] [Google Scholar]
  6. Ingram J., Bartels D. THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lee J., Lentz B. R. Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles. Biochemistry. 1997 Jan 14;36(2):421–431. doi: 10.1021/bi9622332. [DOI] [PubMed] [Google Scholar]
  9. Lelkes P. I., Miller I. R. Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J Membr Biol. 1980 Jan 31;52(1):1–15. doi: 10.1007/BF01869001. [DOI] [PubMed] [Google Scholar]
  10. Lentz B. R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids. 1993 Sep;64(1-3):99–116. doi: 10.1016/0009-3084(93)90060-g. [DOI] [PubMed] [Google Scholar]
  11. Lentz B. R., Wu J. R., Zheng L., Prevrátil J. The interfacial region of dipalmitoylphosphatidylcholine bilayers is perturbed by fusogenic amphipaths. Biophys J. 1996 Dec;71(6):3302–3310. doi: 10.1016/S0006-3495(96)79522-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lynch D. V., Steponkus P. L. Plasma Membrane Lipid Alterations Associated with Cold Acclimation of Winter Rye Seedlings (Secale cereale L. cv Puma). Plant Physiol. 1987 Apr;83(4):761–767. doi: 10.1104/pp.83.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  14. McIntosh T. J. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids. 1996 Jul 15;81(2):117–131. doi: 10.1016/0009-3084(96)02577-7. [DOI] [PubMed] [Google Scholar]
  15. Oliver A. E., Crowe L. M., de Araujo P. S., Fisk E., Crowe J. H. Arbutin inhibits PLA2 in partially hydrated model systems. Biochim Biophys Acta. 1996 Jul 12;1302(1):69–78. doi: 10.1016/0005-2760(96)00031-8. [DOI] [PubMed] [Google Scholar]
  16. Oliver A. E., Hincha D. K., Crowe L. M., Crowe J. H. Interactions of arbutin with dry and hydrated bilayers. Biochim Biophys Acta. 1998 Mar 6;1370(1):87–97. doi: 10.1016/s0005-2736(97)00246-0. [DOI] [PubMed] [Google Scholar]
  17. Prendergast F. G., Haugland R. P., Callahan P. J. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry. 1981 Dec 22;20(26):7333–7338. doi: 10.1021/bi00529a002. [DOI] [PubMed] [Google Scholar]
  18. Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
  19. Sanderson P. W., Williams W. P. Low-temperature phase behaviour of the major plant leaf lipid monogalactosyldiacylglycerol. Biochim Biophys Acta. 1992 Jun 11;1107(1):77–85. doi: 10.1016/0005-2736(92)90331-f. [DOI] [PubMed] [Google Scholar]
  20. Sieg F., Schroder W., Schmitt J. M., Hincha D. K. Purification and Characterization of a Cryoprotective Protein (Cryoprotectin) from the Leaves of Cold-Acclimated Cabbage. Plant Physiol. 1996 May;111(1):215–221. doi: 10.1104/pp.111.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  22. Sun W. Q., Leopold A. C., Crowe L. M., Crowe J. H. Stability of dry liposomes in sugar glasses. Biophys J. 1996 Apr;70(4):1769–1776. doi: 10.1016/S0006-3495(96)79740-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Uemura M., Joseph R. A., Steponkus P. L. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). Plant Physiol. 1995 Sep;109(1):15–30. doi: 10.1104/pp.109.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Verkman A. S., Frosch M. P. Temperature-jump studies of merocyanine 540 relaxation kinetics in lipid bilayer membranes. Biochemistry. 1985 Dec 3;24(25):7117–7122. doi: 10.1021/bi00346a015. [DOI] [PubMed] [Google Scholar]
  26. Webb M. S., Hui S. W., Steponkus P. L. Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures. Biochim Biophys Acta. 1993 Jan 18;1145(1):93–104. doi: 10.1016/0005-2736(93)90385-d. [DOI] [PubMed] [Google Scholar]
  27. de Kruijff B. Polymorphic regulation of membrane lipid composition. Nature. 1987 Oct 15;329(6140):587–588. doi: 10.1038/329587a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES