Abstract
The phase behavior of monolayers containing the complete set of purified phospholipids (PPL) obtained from calf surfactant was investigated as a model for understanding the phase transitions that precede compression of pulmonary surfactant to high surface pressure. During compression, both fluorescence microscopy and Brewster angle microscopy (BAM) distinguished domains that separated from the surrounding film. Quantitative analysis of BAM grayscales indicated optical thicknesses for the PPL domains that were similar to the liquid condensed phase for dipalmitoyl phosphatidylcholine (DPPC), the most abundant component of pulmonary surfactant, and higher and less variable with surface pressure than for the surrounding film. BAM also showed the optical anisotropy that indicates long-range orientational order of tilted lipid chains for the domains, but not for the surrounding film. Fluorescence microscopy shows that addition of DPPC to the PPL increased the area of the domains. At fixed surface pressures from 20-40 mN/m, the total area of each phase grew in proportion with the mol fraction of DPPC. This constant variation allowed analysis of the DPPC mol fraction in each phase, construction of a simple phase diagram, and calculation of the molecular area for each phase. Our results indicate that the phase surrounding the domains is more expanded and compressible, and contains reduced amounts of DPPC in addition to the other phospholipids. The domains contain a mol fraction for DPPC of at least 96%.
Full Text
The Full Text of this article is available as a PDF (467.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Discher B. M., Maloney K. M., Grainger D. W., Sousa C. A., Hall S. B. Neutral lipids induce critical behavior in interfacial monolayers of pulmonary surfactant. Biochemistry. 1999 Jan 5;38(1):374–383. doi: 10.1021/bi981386h. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher B. M., Maloney K. M., Schief W. R., Jr, Grainger D. W., Vogel V., Hall S. B. Lateral phase separation in interfacial films of pulmonary surfactant. Biophys J. 1996 Nov;71(5):2583–2590. doi: 10.1016/S0006-3495(96)79450-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall S. B., Wang Z., Notter R. H. Separation of subfractions of the hydrophobic components of calf lung surfactant. J Lipid Res. 1994 Aug;35(8):1386–1394. [PubMed] [Google Scholar]
- Kahn M. C., Anderson G. J., Anyan W. R., Hall S. B. Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol. 1995 Nov;269(5 Pt 1):L567–L573. doi: 10.1152/ajplung.1995.269.5.L567. [DOI] [PubMed] [Google Scholar]
- Lipp M. M., Lee K. Y., Zasadzinski J. A., Waring A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 1996 Aug 30;273(5279):1196–1199. doi: 10.1126/science.273.5279.1196. [DOI] [PubMed] [Google Scholar]
- Nag K., Keough K. M. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines. Biophys J. 1993 Sep;65(3):1019–1026. doi: 10.1016/S0006-3495(93)81155-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nag K., Perez-Gil J., Ruano M. L., Worthman L. A., Stewart J., Casals C., Keough K. M. Phase transitions in films of lung surfactant at the air-water interface. Biophys J. 1998 Jun;74(6):2983–2995. doi: 10.1016/S0006-3495(98)78005-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Notter R. H., Finkelstein J. N., Taubold R. D. Comparative adsorption of natural lung surfactant, extracted phospholipids, and artificial phospholipid mixtures to the air-water interface. Chem Phys Lipids. 1983 Jul;33(1):67–80. doi: 10.1016/0009-3084(83)90009-9. [DOI] [PubMed] [Google Scholar]
- Peters R., Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7183–7187. doi: 10.1073/pnas.80.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982 Jun;48(3):339–355. doi: 10.1016/0034-5687(82)90038-x. [DOI] [PubMed] [Google Scholar]
- Takahashi A., Fujiwara T. Proteolipid in bovine lung surfactant: its role in surfactant function. Biochem Biophys Res Commun. 1986 Mar 13;135(2):527–532. doi: 10.1016/0006-291x(86)90026-4. [DOI] [PubMed] [Google Scholar]
- Weidemann G., Vollhardt D. Long-range tilt orientational order in phospholipid monolayers: a comparative study. Biophys J. 1996 Jun;70(6):2758–2766. doi: 10.1016/S0006-3495(96)79845-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
