Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2090–2101. doi: 10.1016/S0006-3495(99)77050-5

Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles.

L A Bagatolli 1, E Gratton 1
PMCID: PMC1300490  PMID: 10512829

Abstract

Using the sectioning effect of the two-photon fluorescence microscope, we studied the behavior of phospholipid giant unilamellar vesicles (GUVs) composed of pure diacylphosphatidylcholine phospholipids during the gel-to-liquid crystalline phase transition. We used the well-characterized excitation generalized polarization function (GP(ex)) of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN), which is sensitive to the changes in water content in the lipid vesicles, to monitor the phase transition in the GUVs. Even though the vesicles do not show temperature hysteresis at the main phase transition, we observed different behaviors of the vesicle shape, depending on how the GUV sample reaches the main phase transition. During the cooling cycles, we observed an increase in the vesicle diameter at the phase transition ( approximately 0.5-1%), followed by a decrease in the diameter when the vesicle reached the gel phase. During the heating cycles and close to the phase transition temperature, a surprising behavior is observed, showing a sequence of different vesicle shapes as follows: spherical-polygonal-ellipsoidal. We attribute these changes to the effect of lipid domain coexistence on the macroscopic structure of the GUVs. The "shape hysteresis" in the GUVs is reversible and largely independent of the temperature scan rate. In the presence of 30 mol% of cholesterol the events observed at the phase transition in the GUVs formed by pure phospholipids were absent.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagatolli L. A., Gratton E., Fidelio G. D. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J. 1998 Jul;75(1):331–341. doi: 10.1016/S0006-3495(98)77517-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagatolli L. A., Maggio B., Aguilar F., Sotomayor C. P., Fidelio G. D. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochim Biophys Acta. 1997 Apr 3;1325(1):80–90. doi: 10.1016/s0005-2736(96)00246-5. [DOI] [PubMed] [Google Scholar]
  3. Brumm T., Jørgensen K., Mouritsen O. G., Bayerl T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/ distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys J. 1996 Mar;70(3):1373–1379. doi: 10.1016/S0006-3495(96)79695-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Decher G., Ringsdorf H., Venzmer J., Bitter-Suermann D., Weisgerber C. Giant liposomes as model membranes for immunological studies: spontaneous insertion of purified K1-antigen (poly-alpha-2,8-NeuAc) of Escherichia coli. Biochim Biophys Acta. 1990 Apr 30;1023(3):357–364. doi: 10.1016/0005-2736(90)90127-a. [DOI] [PubMed] [Google Scholar]
  5. Döbereiner H. G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys J. 1993 Oct;65(4):1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans E., Kwok R. Mechanical calorimetry of large dimyristoylphosphatidylcholine vesicles in the phase transition region. Biochemistry. 1982 Sep 28;21(20):4874–4879. doi: 10.1021/bi00263a007. [DOI] [PubMed] [Google Scholar]
  7. Koynova R., Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998 Jun 29;1376(1):91–145. doi: 10.1016/s0304-4157(98)00006-9. [DOI] [PubMed] [Google Scholar]
  8. Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lasic D. D. The mechanism of vesicle formation. Biochem J. 1988 Nov 15;256(1):1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mantsch H. H., McElhaney R. N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213–226. doi: 10.1016/0009-3084(91)90077-o. [DOI] [PubMed] [Google Scholar]
  12. Mason J. T. Investigation of phase transitions in bilayer membranes. Methods Enzymol. 1998;295:468–494. doi: 10.1016/s0076-6879(98)95054-6. [DOI] [PubMed] [Google Scholar]
  13. Mathivet L., Cribier S., Devaux P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McElhaney R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids. 1982 May;30(2-3):229–259. doi: 10.1016/0009-3084(82)90053-6. [DOI] [PubMed] [Google Scholar]
  15. Menger F. M., Keiper J. S. Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol. 1998 Dec;2(6):726–732. doi: 10.1016/s1367-5931(98)80110-5. [DOI] [PubMed] [Google Scholar]
  16. Mouritsen O. G. Theoretical models of phospholipid phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):179–194. doi: 10.1016/0009-3084(91)90075-m. [DOI] [PubMed] [Google Scholar]
  17. Mouritsen O. G., Zuckermann M. J. Softening of lipid bilayers. Eur Biophys J. 1985;12(2):75–86. doi: 10.1007/BF00260430. [DOI] [PubMed] [Google Scholar]
  18. Méléard P., Gerbeaud C., Bardusco P., Jeandaine N., Mitov M. D., Fernandez-Puente L. Mechanical properties of model membranes studied from shape transformations of giant vesicles. Biochimie. 1998 May-Jun;80(5-6):401–413. doi: 10.1016/s0300-9084(00)80008-5. [DOI] [PubMed] [Google Scholar]
  19. Méléard P., Gerbeaud C., Pott T., Fernandez-Puente L., Bivas I., Mitov M. D., Dufourcq J., Bothorel P. Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J. 1997 Jun;72(6):2616–2629. doi: 10.1016/S0006-3495(97)78905-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Needham D., Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry. 1988 Oct 18;27(21):8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
  21. Needham D., McIntosh T. J., Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry. 1988 Jun 28;27(13):4668–4673. doi: 10.1021/bi00413a013. [DOI] [PubMed] [Google Scholar]
  22. Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parasassi T., Gratton E., Yu W. M., Wilson P., Levi M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J. 1997 Jun;72(6):2413–2429. doi: 10.1016/S0006-3495(97)78887-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sackmann E., Feder T. Budding, fission and domain formation in mixed lipid vesicles induced by lateral phase separation and macromolecular condensation. Mol Membr Biol. 1995 Jan-Mar;12(1):21–28. doi: 10.3109/09687689509038491. [DOI] [PubMed] [Google Scholar]
  26. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  27. Watts A., Spooner P. J. Phospholipid phase transitions as revealed by NMR. Chem Phys Lipids. 1991 Mar;57(2-3):195–211. doi: 10.1016/0009-3084(91)90076-n. [DOI] [PubMed] [Google Scholar]
  28. Yager P., Sheridan J. P., Peticolas W. L. Changes in size and shape of liposomes undergoing chain melting transitions as studied by optical microscopy. Biochim Biophys Acta. 1982 Dec 22;693(2):485–491. doi: 10.1016/0005-2736(82)90457-6. [DOI] [PubMed] [Google Scholar]
  29. Yu W., So P. T., French T., Gratton E. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J. 1996 Feb;70(2):626–636. doi: 10.1016/S0006-3495(96)79646-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES