Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2114–2122. doi: 10.1016/S0006-3495(99)77052-9

Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes.

H Ishida 1, C Genka 1, Y Hirota 1, H Nakazawa 1, W H Barry 1
PMCID: PMC1300492  PMID: 10512831

Abstract

A novel Nipkow-type confocal microscope was applied to image spontaneously propagating Ca2+ waves in isolated rat ventricular myocytes by means of fluo-3. The sarcolemma was imaged with di-8-ANEPPS and the nucleus with SYTO 11. Full frame images in different vertical sections were obtained at video frame rate by means of an intensified CCD camera. Three types of Ca2+ waves were identified: spherical waves, planar waves, and spiral waves. Both spherical waves and spiral waves could initiate a planar wave, and planar waves were not influenced by the presence of a nucleus. Spiral waves, however, were consistently found adjacent to a nucleus and displayed a slower propagation rate and slower rate of increase in Ca2+ concentration in the wave front than did spherical and planar waves. The planar waves were apparent throughout the vertical axis of the cell, whereas spiral waves appeared to have a vertical height of approximately 3 microm, less than the maximum thickness of the nucleus (5.0 +/- 0.3 microm). These results provide experimental confirmation of previous modeling studies which predicted an influence of the nucleus on spiral-type Ca2+ waves. When a spontaneous Ca2+ wave is small relative to the size of the nucleus, it appears that the Ca2+ buffering by the nucleus is sufficient to slow the rate of spontaneous propagation of the Ca2+ wave in close proximity to the nucleus. These findings thus support the idea that the nucleus can influence complex behavior of Ca2+ waves in isolated cardiac myocytes.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Cannell M. B., Cheng H., Lederer W. J. The control of calcium release in heart muscle. Science. 1995 May 19;268(5213):1045–1049. doi: 10.1126/science.7754384. [DOI] [PubMed] [Google Scholar]
  3. Dupont G., Pontes J., Goldbeter A. Modeling spiral Ca2+ waves in single cardiac cells: role of the spatial heterogeneity created by the nucleus. Am J Physiol. 1996 Oct;271(4 Pt 1):C1390–C1399. doi: 10.1152/ajpcell.1996.271.4.C1390. [DOI] [PubMed] [Google Scholar]
  4. Engel J., Fechner M., Sowerby A. J., Finch S. A., Stier A. Anisotropic propagation of Ca2+ waves in isolated cardiomyocytes. Biophys J. 1994 Jun;66(6):1756–1762. doi: 10.1016/S0006-3495(94)80997-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fabiato A., Fabiato F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol. 1975 Aug;249(3):469–495. doi: 10.1113/jphysiol.1975.sp011026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Genka C., Ishida H., Ichimori K., Hirota Y., Tanaami T., Nakazawa H. Visualization of biphasic Ca2+ diffusion from cytosol to nucleus in contracting adult rat cardiac myocytes with an ultra-fast confocal imaging system. Cell Calcium. 1999 Mar;25(3):199–208. doi: 10.1054/ceca.1999.0026. [DOI] [PubMed] [Google Scholar]
  8. Gerhardt M., Schuster H., Tyson J. J. A cellular automation model of excitable media including curvature and dispersion. Science. 1990 Mar 30;247(4950):1563–1566. doi: 10.1126/science.2321017. [DOI] [PubMed] [Google Scholar]
  9. Ishide N., Miura M., Sakurai M., Takishima T. Initiation and development of calcium waves in rat myocytes. Am J Physiol. 1992 Aug;263(2 Pt 2):H327–H332. doi: 10.1152/ajpheart.1992.263.2.H327. [DOI] [PubMed] [Google Scholar]
  10. Kagaya Y., Weinberg E. O., Ito N., Mochizuki T., Barry W. H., Lorell B. H. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. J Clin Invest. 1995 Jun;95(6):2766–2776. doi: 10.1172/JCI117980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lipp P., Hüser J., Pott L., Niggli E. Subcellular properties of triggered Ca2+ waves in isolated citrate-loaded guinea-pig atrial myocytes characterized by ratiometric confocal microscopy. J Physiol. 1996 Dec 15;497(Pt 3):599–610. doi: 10.1113/jphysiol.1996.sp021793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipp P., Niggli E. Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys J. 1993 Dec;65(6):2272–2276. doi: 10.1016/S0006-3495(93)81316-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995 May 19;268(5213):1042–1045. doi: 10.1126/science.7754383. [DOI] [PubMed] [Google Scholar]
  14. Niggli E., Lederer W. J. Real-time confocal microscopy and calcium measurements in heart muscle cells: towards the development of a fluorescence microscope with high temporal and spatial resolution. Cell Calcium. 1990 Feb-Mar;11(2-3):121–130. doi: 10.1016/0143-4160(90)90065-3. [DOI] [PubMed] [Google Scholar]
  15. Niggli E., Lederer W. J. Voltage-independent calcium release in heart muscle. Science. 1990 Oct 26;250(4980):565–568. doi: 10.1126/science.2173135. [DOI] [PubMed] [Google Scholar]
  16. Stern M. D., Capogrossi M. C., Lakatta E. G. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium. 1988 Dec;9(5-6):247–256. doi: 10.1016/0143-4160(88)90005-x. [DOI] [PubMed] [Google Scholar]
  17. Stern M. D. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992 Aug;63(2):497–517. doi: 10.1016/S0006-3495(92)81615-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takamatsu T., Wier W. G. Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity. FASEB J. 1990 Mar;4(5):1519–1525. doi: 10.1096/fasebj.4.5.2307330. [DOI] [PubMed] [Google Scholar]
  19. Tang Y., Othmer H. G. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J. 1994 Dec;67(6):2223–2235. doi: 10.1016/S0006-3495(94)80707-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wier W. G. [Ca2+]i waves in heart cells: more than a passing fancy. Biophys J. 1993 Dec;65(6):2270–2271. doi: 10.1016/S0006-3495(93)81287-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wussling M. H., Salz H. Nonlinear propagation of spherical calcium waves in rat cardiac myocytes. Biophys J. 1996 Mar;70(3):1144–1153. doi: 10.1016/S0006-3495(96)79715-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES