Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2184–2190. doi: 10.1016/S0006-3495(99)77058-X

Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution.

R M Daniel 1, J L Finney 1, V Réat 1, R Dunn 1, M Ferrand 1, J C Smith 1
PMCID: PMC1300498  PMID: 10512837

Abstract

We have examined the temperature dependence of motions in a cryosolution of the enzyme glutamate dehydrogenase (GDH) and compared these with activity. Dynamic neutron scattering was performed with two instruments of different energy resolution, permitting the separate determination of the average dynamical mean square displacements on the sub-approximately 100 ps and sub-approximately 5 ns time scales. The results demonstrate a marked dependence on the time scale of the temperature profile of the mean square displacement. The lowest temperature at which anharmonic motion is observed is heavily dependent on the time window of the instrument used to observe the dynamics. Several dynamical transitions (inflexions of the mean squared displacement) are observed in the slower dynamics. Comparison with the temperature profile of the activity of the enzyme in the same solvent reveals dynamical transitions that have no effect on GDH function.

Full Text

The Full Text of this article is available as a PDF (159.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. J., Waugh M. L., Wang X. G., Stillman T. J., Turnbull A. P., Engel P. C., Rice D. W. Determinants of substrate specificity in the superfamily of amino acid dehydrogenases. Biochemistry. 1997 Dec 23;36(51):16109–16115. doi: 10.1021/bi972024x. [DOI] [PubMed] [Google Scholar]
  2. Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cusack S., Doster W. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990 Jul;58(1):243–251. doi: 10.1016/S0006-3495(90)82369-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daniel R. M., Dines M., Petach H. H. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996 Jul 1;317(Pt 1):1–11. doi: 10.1042/bj3170001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniel R. M., Smith J. C., Ferrand M., Héry S., Dunn R., Finney J. L. Enzyme activity below the dynamical transition at 220 K. Biophys J. 1998 Nov;75(5):2504–2507. doi: 10.1016/S0006-3495(98)77694-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  8. Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  10. Hudson R. C., Daniel R. M. L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993 Dec;106(4):767–792. doi: 10.1016/0305-0491(93)90031-y. [DOI] [PubMed] [Google Scholar]
  11. Hudson R. C., Daniel R. M. Steady state kinetics of the glutamate dehydrogenase from an archaebacterial extreme thermophile, isolate AN1. Biochim Biophys Acta. 1995 Jul 3;1250(1):60–68. doi: 10.1016/0167-4838(95)00043-t. [DOI] [PubMed] [Google Scholar]
  12. Hudson R. C., Ruttersmith L. D., Daniel R. M. Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochim Biophys Acta. 1993 Oct 6;1202(2):244–250. doi: 10.1016/0167-4838(93)90011-f. [DOI] [PubMed] [Google Scholar]
  13. Lehnert U., Réat V., Weik M., Zaccaï G., Pfister C. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys J. 1998 Oct;75(4):1945–1952. doi: 10.1016/S0006-3495(98)77635-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. More N., Daniel R. M., Petach H. H. The effect of low temperatures on enzyme activity. Biochem J. 1995 Jan 1;305(Pt 1):17–20. doi: 10.1042/bj3050017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parak F., Frolov E. N., Kononenko A. A., Mössbauer R. L., Goldanskii V. I., Rubin A. B. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. 1980 Aug 11;117(1):368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
  17. Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
  18. Phelps D. K., Rossky P. J., Post C. B. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. J Mol Biol. 1998 Feb 20;276(2):331–337. doi: 10.1006/jmbi.1997.1542. [DOI] [PubMed] [Google Scholar]
  19. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  20. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  21. Réat V., Patzelt H., Ferrand M., Pfister C., Oesterhelt D., Zaccai G. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970–4975. doi: 10.1073/pnas.95.9.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilton R. F., Jr, Dewan J. C., Petsko G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry. 1992 Mar 10;31(9):2469–2481. doi: 10.1021/bi00124a006. [DOI] [PubMed] [Google Scholar]
  23. Van den Burg B., Vriend G., Veltman O. R., Venema G., Eijsink V. G. Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2056–2060. doi: 10.1073/pnas.95.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES