Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2266–2283. doi: 10.1016/S0006-3495(99)77066-9

Cell membrane orientation visualized by polarized total internal reflection fluorescence.

S E Sund 1, J A Swanson 1, D Axelrod 1
PMCID: PMC1300506  PMID: 10512845

Abstract

In living cells, variations in membrane orientation occur both in easily imaged large-scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method is introduced here to visualize such regions. The method is based on fluorescence of an oriented membrane probe excited by a polarized evanescent field created by total internal reflection (TIR) illumination. The fluorescent carbocyanine dye diI-C(18)-(3) (diI) has previously been shown to embed in the lipid bilayer of cell membranes with its transition dipoles oriented nearly in the plane of the membrane. The membrane-embedded diI near the cell-substrate interface can be fluorescently excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane, and also gives information regarding the fraction of unoriented diI in the membrane. Both a theoretical background and experimental verification of the technique is presented for samples of 1) oriented diI in model lipid bilayer membranes, erythrocytes, and macrophages; and 2) randomly oriented fluorophores in rhodamine-labeled serum albumin adsorbed to glass, in rhodamine dextran solution, and in rhodamine dextran-loaded macrophages. Sequential digital images of the polarized TIR fluorescence ratios show spatially-resolved time-course maps of membrane orientations on diI-labeled macrophages from which low visibility membrane structures can be identified and quantified. To sharpen and contrast-enhance the TIR images, we deconvoluted them with an experimentally measured point spread function. Image deconvolution is especially effective and fast in our application because fluorescence in TIR emanates from a single focal plane.

Full Text

The Full Text of this article is available as a PDF (882.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Badley R. A., Martin W. G., Schneider H. Dynamic behavior of fluorescent probes in lipid bilayer model membranes. Biochemistry. 1973 Jan 16;12(2):268–275. doi: 10.1021/bi00726a015. [DOI] [PubMed] [Google Scholar]
  3. Cabrini G., Verkman A. S. Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles. J Membr Biol. 1986;90(2):163–175. doi: 10.1007/BF01869934. [DOI] [PubMed] [Google Scholar]
  4. Das T. K., Periasamy N., Krishnamoorthy G. Mechanism of response of potential-sensitive dyes studied by time-resolved fluorescence. Biophys J. 1993 Apr;64(4):1122–1132. doi: 10.1016/S0006-3495(93)81478-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heiple J. M., Wright S. D., Allen N. S., Silverstein S. C. Macrophages form circular zones of very close apposition to IgG-coated surfaces. Cell Motil Cytoskeleton. 1990;15(4):260–270. doi: 10.1002/cm.970150408. [DOI] [PubMed] [Google Scholar]
  6. Hollenbeck P. J., Swanson J. A. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature. 1990 Aug 30;346(6287):864–866. doi: 10.1038/346864a0. [DOI] [PubMed] [Google Scholar]
  7. Lang T., Wacker I., Steyer J., Kaether C., Wunderlich I., Soldati T., Gerdes H. H., Almers W. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron. 1997 Jun;18(6):857–863. doi: 10.1016/s0896-6273(00)80325-6. [DOI] [PubMed] [Google Scholar]
  8. Mc Kiernan A. E., MacDonald R. I., MacDonald R. C., Axelrod D. Cytoskeletal protein binding kinetics at planar phospholipid membranes. Biophys J. 1997 Oct;73(4):1987–1998. doi: 10.1016/S0006-3495(97)78229-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McNeil P. L., Murphy R. F., Lanni F., Taylor D. L. A method for incorporating macromolecules into adherent cells. J Cell Biol. 1984 Apr;98(4):1556–1564. doi: 10.1083/jcb.98.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oheim M., Loerke D., Stühmer W., Chow R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 1998;27(2):83–98. doi: 10.1007/s002490050114. [DOI] [PubMed] [Google Scholar]
  11. Steyer J. A., Almers W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J. 1999 Apr;76(4):2262–2271. doi: 10.1016/S0006-3495(99)77382-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  13. Swanson J. A., Locke A., Ansel P., Hollenbeck P. J. Radial movement of lysosomes along microtubules in permeabilized macrophages. J Cell Sci. 1992 Sep;103(Pt 1):201–209. doi: 10.1242/jcs.103.1.201. [DOI] [PubMed] [Google Scholar]
  14. Swanson J. A. Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J Cell Sci. 1989 Sep;94(Pt 1):135–142. doi: 10.1242/jcs.94.1.135. [DOI] [PubMed] [Google Scholar]
  15. Takemura R., Stenberg P. E., Bainton D. F., Werb Z. Rapid redistribution of clathrin onto macrophage plasma membranes in response to Fc receptor-ligand interaction during frustrated phagocytosis. J Cell Biol. 1986 Jan;102(1):55–69. doi: 10.1083/jcb.102.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Velez M., Axelrod D. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes. Biophys J. 1988 Apr;53(4):575–591. doi: 10.1016/S0006-3495(88)83137-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wright S. D., Silverstein S. C. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature. 1984 May 24;309(5966):359–361. doi: 10.1038/309359a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES