Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Oct;77(4):2311–2328. doi: 10.1016/S0006-3495(99)77070-0

Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.

A Kloboucek 1, A Behrisch 1, J Faix 1, E Sackmann 1
PMCID: PMC1300510  PMID: 10512849

Abstract

A model system to study the control of cell adhesion by receptor-mediated specific forces, universal interactions, and membrane elasticity is established. The plasma membrane is mimicked by reconstitution of homophilic receptor proteins into solid supported membranes and, together with lipopolymers, into giant vesicles with the polymers forming an artificial glycocalix. The homophilic cell adhesion molecule contact site A, a lipid-anchored glycoprotein from cells of the slime mold Dictyostelium discoideum, is used as receptor. The success of the reconstitution, the structure and the dynamics of the model membranes are studied by various techniques including film balance techniques, micro fluorescence, fluorescence recovery after photobleaching, electron microscopy, and phase contrast microscopy. The interaction of the functionalized giant vesicles with the supported bilayer is studied by reflection interference contrast microscopy, and the adhesion strength is evaluated quantitatively by a recently developed technique. At low receptor concentrations adhesion-induced receptor segregation in the membranes leads to decomposition of the contact zone between membranes into domains of strong (receptor-mediated) adhesion and regions of weak adhesion while continuous zones of strong adhesion form at high receptor densities. The adhesion strengths (measured in terms of the spreading pressure S) of the various states of adhesion are obtained locally by analysis of the vesicle contour near the contact line in terms of elastic boundary conditions of adhesion: the balance of tensions and moments. The spreading pressure of the weak adhesion zones is S approximately 10(-9) J/m(2) and is determined by the interplay of gravitation and undulation forces whereas the spreading pressure of the tight adhesion domains is of the order S approximately 10(-6) J/m(2).

Full Text

The Full Text of this article is available as a PDF (888.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albersdörfer A., Feder T., Sackmann E. Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J. 1997 Jul;73(1):245–257. doi: 10.1016/S0006-3495(97)78065-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barth A., Müller-Taubenberger A., Taranto P., Gerisch G. Replacement of the phospholipid-anchor in the contact site A glycoprotein of D. discoideum by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface. J Cell Biol. 1994 Jan;124(1-2):205–215. doi: 10.1083/jcb.124.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertholdt G., Stadler J., Bozzaro S., Fichtner B., Gerisch G. Carbohydrate and other epitopes of the contact site A glycoprotein of Dictyostelium discoideum as characterized by monoclonal antibodies. Cell Differ. 1985 May;16(3):187–202. doi: 10.1016/0045-6039(85)90516-0. [DOI] [PubMed] [Google Scholar]
  5. Bruinsma R., Goulian M., Pincus P. Self-assembly of membrane junctions. Biophys J. 1994 Aug;67(2):746–750. doi: 10.1016/S0006-3495(94)80535-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan P. Y., Lawrence M. B., Dustin M. L., Ferguson L. M., Golan D. E., Springer T. A. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol. 1991 Oct;115(1):245–255. doi: 10.1083/jcb.115.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dustin M. L., Ferguson L. M., Chan P. Y., Springer T. A., Golan D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol. 1996 Feb;132(3):465–474. doi: 10.1083/jcb.132.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dustin M. L., Olive D., Springer T. A. Correlation of CD2 binding and functional properties of multimeric and monomeric lymphocyte function-associated antigen 3. J Exp Med. 1989 Feb 1;169(2):503–517. doi: 10.1084/jem.169.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faix J., Gerisch G., Noegel A. A. Overexpression of the csA cell adhesion molecule under its own cAMP-regulated promoter impairs morphogenesis in Dictyostelium. J Cell Sci. 1992 Jun;102(Pt 2):203–214. doi: 10.1242/jcs.102.2.203. [DOI] [PubMed] [Google Scholar]
  10. Garewal H. S. A procedure for the estimation of microgram quantities of triton X-100. Anal Biochem. 1973 Aug;54(2):319–324. doi: 10.1016/0003-2697(73)90359-x. [DOI] [PubMed] [Google Scholar]
  11. Gerisch G. Inter-relation of cell adhesion and differentiation in Dictyostelium discoideum. J Cell Sci Suppl. 1986;4:201–219. doi: 10.1242/jcs.1986.supplement_4.13. [DOI] [PubMed] [Google Scholar]
  12. Harloff C., Gerisch G., Noegel A. A. Selective elimination of the contact site A protein of Dictyostelium discoideum by gene disruption. Genes Dev. 1989 Dec;3(12A):2011–2019. doi: 10.1101/gad.3.12a.2011. [DOI] [PubMed] [Google Scholar]
  13. Heyn S. P., Tillmann R. W., Egger M., Gaub H. E. A miniaturized micro-fluorescence film balance for protein-containing lipid monolayers spread from a vesicle suspension. J Biochem Biophys Methods. 1991 Feb-Mar;22(2):145–158. doi: 10.1016/0165-022x(91)90027-t. [DOI] [PubMed] [Google Scholar]
  14. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  15. Kuchel P. W., Campbell D. G., Barclay A. N., Williams A. F. Molecular weights of the Thy-1 glycoproteins from rat thymus and brain in the presence and absence of deoxycholate. Biochem J. 1978 Feb 1;169(2):411–417. doi: 10.1042/bj1690411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kühner M., Tampé R., Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates. Biophys J. 1994 Jul;67(1):217–226. doi: 10.1016/S0006-3495(94)80472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  19. Michell R. H., Wakelam M. J. Second messengers. Sphingolipid signalling. Curr Biol. 1994 Apr 1;4(4):370–373. doi: 10.1016/s0960-9822(00)00083-x. [DOI] [PubMed] [Google Scholar]
  20. Piekenbrock T., Sackmann E. Quasielastic light scattering study of thermal excitations of F-actin solutions and of growth kinetics of actin filaments. Biopolymers. 1992 Nov;32(11):1471–1489. doi: 10.1002/bip.360321107. [DOI] [PubMed] [Google Scholar]
  21. Rädler JO, Feder TJ, Strey HH, Sackmann E. Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4526–4536. doi: 10.1103/physreve.51.4526. [DOI] [PubMed] [Google Scholar]
  22. Seifert U, Lipowsky R. Adhesion of vesicles. Phys Rev A. 1990 Oct 15;42(8):4768–4771. doi: 10.1103/physreva.42.4768. [DOI] [PubMed] [Google Scholar]
  23. Seifert U. Self-consistent theory of bound vesicles. Phys Rev Lett. 1995 Jun 19;74(25):5060–5063. doi: 10.1103/PhysRevLett.74.5060. [DOI] [PubMed] [Google Scholar]
  24. Shotton D. M., Burke B. E., Branton D. The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol. 1979 Jun 25;131(2):303–329. doi: 10.1016/0022-2836(79)90078-0. [DOI] [PubMed] [Google Scholar]
  25. Siu C. H., Kamboj R. K. Cell-cell adhesion and morphogenesis in Dictyostelium discoideum. Dev Genet. 1990;11(5-6):377–387. doi: 10.1002/dvg.1020110509. [DOI] [PubMed] [Google Scholar]
  26. Siu C. H., Wong L. M., Lam T. Y., Kamboj R. K., Choi A., Cho A. Molecular mechanisms of cell-cell interaction in Dictyostelium discoideum. Biochem Cell Biol. 1988 Oct;66(10):1089–1099. doi: 10.1139/o88-126. [DOI] [PubMed] [Google Scholar]
  27. Stadler J., Keenan T. W., Bauer G., Gerisch G. The contact site A glycoprotein of Dictyostelium discoideum carries a phospholipid anchor of a novel type. EMBO J. 1989 Feb;8(2):371–377. doi: 10.1002/j.1460-2075.1989.tb03387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stein T., Gerisch G. Oriented binding of a lipid-anchored cell adhesion protein onto a biosensor surface using hydrophobic immobilization and photoactive crosslinking. Anal Biochem. 1996 Jun 1;237(2):252–259. doi: 10.1006/abio.1996.0237. [DOI] [PubMed] [Google Scholar]
  29. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  30. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wiegand G, Jaworek T, Wegner G, Sackmann E. Studies of Structure and Local Wetting Properties on Heterogeneous, Micropatterned Solid Surfaces by Microinterferometry. J Colloid Interface Sci. 1997 Dec 15;196(2):299–312. doi: 10.1006/jcis.1997.5193. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES