Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2358–2365. doi: 10.1016/S0006-3495(99)77073-6

A thermodynamic model for receptor clustering

C Guo 1, H Levine 1
PMCID: PMC1300513  PMID: 10545339

Abstract

Intracellular signaling often arises from ligand-induced oligomerization of cell surface receptors. This oligomerization or clustering process is fundamentally a cooperative behavior between near-neighbor receptor molecules; the properties of this cooperative process clearly affect the signal transduction. Recent investigations have revealed the molecular basis of receptor-receptor interactions, but a simple theoretical framework for using these data to predict cluster formation has been lacking. Here, we propose a simple, coarse-grained, phenomenological model for ligand-modulated receptor interactions and discuss its equilibrium properties via mean-field theory. The existence of a first-order transition for this model has immediate implications for the robustness of the cellular signaling response.

Full Text

The Full Text of this article is available as a PDF (111.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkenazi A., Dixit V. M. Death receptors: signaling and modulation. Science. 1998 Aug 28;281(5381):1305–1308. doi: 10.1126/science.281.5381.1305. [DOI] [PubMed] [Google Scholar]
  2. Barkai N., Leibler S. Robustness in simple biochemical networks. Nature. 1997 Jun 26;387(6636):913–917. doi: 10.1038/43199. [DOI] [PubMed] [Google Scholar]
  3. Bazzoni F., Beutler B. How do tumor necrosis factor receptors work? J Inflamm. 1995;45(4):221–238. [PubMed] [Google Scholar]
  4. Bean J. W., Sargent D. F., Schwyzer R. Ligand/receptor interactions--the influence of the microenvironment on macroscopic properties. Electrostatic interactions with the membrane phase. J Recept Res. 1988;8(1-4):375–389. doi: 10.3109/10799898809048999. [DOI] [PubMed] [Google Scholar]
  5. Boldin M. P., Mett I. L., Varfolomeev E. E., Chumakov I., Shemer-Avni Y., Camonis J. H., Wallach D. Self-association of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem. 1995 Jan 6;270(1):387–391. doi: 10.1074/jbc.270.1.387. [DOI] [PubMed] [Google Scholar]
  6. Bray D., Levin M. D., Morton-Firth C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature. 1998 May 7;393(6680):85–88. doi: 10.1038/30018. [DOI] [PubMed] [Google Scholar]
  7. Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corti A., Poiesi C., Merli S., Cassani G. Tumor necrosis factor (TNF) alpha quantification by ELISA and bioassay: effects of TNF alpha-soluble TNF receptor (p55) complex dissociation during assay incubations. J Immunol Methods. 1994 Dec 28;177(1-2):191–198. doi: 10.1016/0022-1759(94)90156-2. [DOI] [PubMed] [Google Scholar]
  9. Elliott S., Lorenzini T., Yanagihara D., Chang D., Elliott G. Activation of the erythropoietin (EPO) receptor by bivalent anti-EPO receptor antibodies. J Biol Chem. 1996 Oct 4;271(40):24691–24697. doi: 10.1074/jbc.271.40.24691. [DOI] [PubMed] [Google Scholar]
  10. Germain R. N. T-cell signaling: the importance of receptor clustering. Curr Biol. 1997 Oct 1;7(10):R640–R644. doi: 10.1016/s0960-9822(06)00323-x. [DOI] [PubMed] [Google Scholar]
  11. Goldstein B., Perelson A. S. Equilibrium theory for the clustering of bivalent cell surface receptors by trivalent ligands. Application to histamine release from basophils. Biophys J. 1984 Jun;45(6):1109–1123. doi: 10.1016/S0006-3495(84)84259-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein B., Wiegel F. W. The effect of receptor clustering on diffusion-limited forward rate constants. Biophys J. 1983 Jul;43(1):121–125. doi: 10.1016/S0006-3495(83)84330-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grell M., Wajant H., Zimmermann G., Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):570–575. doi: 10.1073/pnas.95.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hahn W. C., Burakoff S. J., Bierer B. E. Signal transduction pathways involved in T cell receptor-induced regulation of CD2 avidity for CD58. J Immunol. 1993 Apr 1;150(7):2607–2619. [PubMed] [Google Scholar]
  15. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  16. Holsinger L. J., Graef I. A., Swat W., Chi T., Bautista D. M., Davidson L., Lewis R. S., Alt F. W., Crabtree G. R. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol. 1998 May 7;8(10):563–572. doi: 10.1016/s0960-9822(98)70225-8. [DOI] [PubMed] [Google Scholar]
  17. Humphries M. J. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol. 1996 Oct;8(5):632–640. doi: 10.1016/s0955-0674(96)80104-9. [DOI] [PubMed] [Google Scholar]
  18. Jafri M. S., Keizer J. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J. 1995 Nov;69(5):2139–2153. doi: 10.1016/S0006-3495(95)80088-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jiang Y., Woronicz J. D., Liu W., Goeddel D. V. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science. 1999 Jan 22;283(5401):543–546. doi: 10.1126/science.283.5401.543. [DOI] [PubMed] [Google Scholar]
  20. Jones E. Y., Stuart D. I., Walker N. P. Crystal structure of TNF. Immunol Ser. 1992;56:93–127. [PubMed] [Google Scholar]
  21. Jones E. Y., Stuart D. I., Walker N. P. The structure of tumour necrosis factor--implications for biological function. J Cell Sci Suppl. 1990;13:11–18. doi: 10.1242/jcs.1990.supplement_13.3. [DOI] [PubMed] [Google Scholar]
  22. Lemmon M. A., Bu Z., Ladbury J. E., Zhou M., Pinchasi D., Lax I., Engelman D. M., Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997 Jan 15;16(2):281–294. doi: 10.1093/emboj/16.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lemmon M. A., Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci. 1994 Nov;19(11):459–463. doi: 10.1016/0968-0004(94)90130-9. [DOI] [PubMed] [Google Scholar]
  24. Lemmon M. A., Schlessinger J. Transmembrane signaling by receptor oligomerization. Methods Mol Biol. 1998;84:49–71. doi: 10.1385/0-89603-488-7:49. [DOI] [PubMed] [Google Scholar]
  25. Luo K., Lodish H. F. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 1997 Apr 15;16(8):1970–1981. doi: 10.1093/emboj/16.8.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Naismith J. H., Brandhuber B. J., Devine T. Q., Sprang S. R. Seeing double: crystal structures of the type I TNF receptor. J Mol Recognit. 1996 Mar-Apr;9(2):113–117. doi: 10.1002/(sici)1099-1352(199603)9:2<113::aid-jmr253>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  27. Naismith J. H., Devine T. Q., Brandhuber B. J., Sprang S. R. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem. 1995 Jun 2;270(22):13303–13307. doi: 10.1074/jbc.270.22.13303. [DOI] [PubMed] [Google Scholar]
  28. Reich Z., Boniface J. J., Lyons D. S., Borochov N., Wachtel E. J., Davis M. M. Ligand-specific oligomerization of T-cell receptor molecules. Nature. 1997 Jun 5;387(6633):617–620. doi: 10.1038/42500. [DOI] [PubMed] [Google Scholar]
  29. Riley M. R., Buettner H. M., Muzzio F. J., Reyes S. C. Monte Carlo simulation of diffusion and reaction in two-dimensional cell structures. Biophys J. 1995 May;68(5):1716–1726. doi: 10.1016/S0006-3495(95)80349-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sakihama T., Smolyar A., Reinherz E. L. Molecular recognition of antigen involves lattice formation between CD4, MHC class II and TCR molecules. Immunol Today. 1995 Dec;16(12):581–587. doi: 10.1016/0167-5699(95)80081-6. [DOI] [PubMed] [Google Scholar]
  31. Shea L. D., Omann G. M., Linderman J. J. Calculation of diffusion-limited kinetics for the reactions in collision coupling and receptor cross-linking. Biophys J. 1997 Dec;73(6):2949–2959. doi: 10.1016/S0006-3495(97)78323-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shoyab M., Todaro G. J. Perturbation of membrane phospholipids alters the interaction between epidermal growth factor and its membrane receptors. Arch Biochem Biophys. 1981 Jan;206(1):222–226. doi: 10.1016/0003-9861(81)90084-9. [DOI] [PubMed] [Google Scholar]
  33. Stewart M. P., McDowall A., Hogg N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J Cell Biol. 1998 Feb 9;140(3):699–707. doi: 10.1083/jcb.140.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stuart D. I., Jones E. Y. Recognition at the cell surface: recent structural insights. Curr Opin Struct Biol. 1995 Dec;5(6):735–743. doi: 10.1016/0959-440x(95)80005-0. [DOI] [PubMed] [Google Scholar]
  35. Sundberg C., Rubin K. Stimulation of beta1 integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF beta-receptors. J Cell Biol. 1996 Feb;132(4):741–752. doi: 10.1083/jcb.132.4.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Valitutti S., Dessing M., Aktories K., Gallati H., Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med. 1995 Feb 1;181(2):577–584. doi: 10.1084/jem.181.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ward M. D., Hammer D. A. Morphology of cell-substratum adhesion. Influence of receptor heterogeneity and nonspecific forces. Cell Biophys. 1992 Apr-Jun;20(2-3):177–222. doi: 10.1007/BF02823657. [DOI] [PubMed] [Google Scholar]
  38. Wyszynski M., Lin J., Rao A., Nigh E., Beggs A. H., Craig A. M., Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997 Jan 30;385(6615):439–442. doi: 10.1038/385439a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES