Abstract
An analysis of four 1-ns molecular dynamics trajectories for two different 15-bp oligonucleotides is presented. Our aim is to show which groups of atoms can be treated as rigid bodies within a bead representation of DNA, independently of the base sequence and for any conformations belonging to the A/B family. Five models with moderate intragroup deformations are proposed in which the groups are formed of atoms belonging to a single nucleotide or to a complementary nucleotide pair. The influence of group deformation in two of these models is studied using canonical correlation analysis, and it is shown that the internal DNA dynamics is indeed dominated by the rigid motion of the defined atom groups. Finally, using one of the models within a bead representation of duplex DNA makes it possible to obtain stretching, torsional, and bending rigidities in reasonable agreement with experiment but points to strongly correlated stretching motions.
Full Text
The Full Text of this article is available as a PDF (118.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison S. A., McCammon J. A. Multistep Brownian dynamics: application to short wormlike chains. Biopolymers. 1984 Feb;23(2):363–375. doi: 10.1002/bip.360230214. [DOI] [PubMed] [Google Scholar]
- Briki F., Genest D. Canonical analysis of correlated atomic motions in DNA from molecular dynamics simulation. Biophys Chem. 1994 Sep;52(1):35–43. doi: 10.1016/0301-4622(94)00063-8. [DOI] [PubMed] [Google Scholar]
- Briki F., Genest D. Rigid-body motions of sub-units in DNA: a correlation analysis of a 200 ps molecular dynamics simulation. J Biomol Struct Dyn. 1995 Apr;12(5):1063–1082. doi: 10.1080/07391102.1995.10508798. [DOI] [PubMed] [Google Scholar]
- Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
- Definitions and nomenclature of nucleic acid structure parameters. J Mol Biol. 1989 Feb 20;205(4):787–791. doi: 10.1016/0022-2836(89)90324-0. [DOI] [PubMed] [Google Scholar]
- Feig M., Pettitt B. M. Structural equilibrium of DNA represented with different force fields. Biophys J. 1998 Jul;75(1):134–149. doi: 10.1016/S0006-3495(98)77501-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flatters D., Lavery R. Sequence-dependent dynamics of TATA-Box binding sites. Biophys J. 1998 Jul;75(1):372–381. doi: 10.1016/S0006-3495(98)77521-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flatters D., Young M., Beveridge D. L., Lavery R. Conformational properties of the TATA-box binding sequence of DNA. J Biomol Struct Dyn. 1997 Jun;14(6):757–765. doi: 10.1080/07391102.1997.10508178. [DOI] [PubMed] [Google Scholar]
- Gaudin F., Lancelot G., Genest D. Search for rigid sub domains in DNA from molecular dynamics simulations. J Biomol Struct Dyn. 1997 Oct;15(2):357–367. doi: 10.1080/07391102.1997.10508198. [DOI] [PubMed] [Google Scholar]
- Genest D. How long does DNA keep the memory of its conformation? A time-dependent canonical correlation analysis of molecular dynamics simulation. Biopolymers. 1996 Mar;38(3):389–399. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C389::AID-BIP11%3E3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- Genest D., Wahl P. Fluorescence anisotropy decay due to rotational brownian motion of ethidium intercalated in double strand DNA. Biochim Biophys Acta. 1978 Dec 21;521(2):502–509. doi: 10.1016/0005-2787(78)90292-7. [DOI] [PubMed] [Google Scholar]
- Guéron M., Kochoyan M., Leroy J. L. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987 Jul 2;328(6125):89–92. doi: 10.1038/328089a0. [DOI] [PubMed] [Google Scholar]
- Hogan M. E., Jardetzky O. Internal motions in deoxyribonucleic acid II. Biochemistry. 1980 Jul 22;19(15):3460–3468. doi: 10.1021/bi00556a009. [DOI] [PubMed] [Google Scholar]
- Héry S., Genest D., Smith J. C. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation. J Mol Biol. 1998 May 29;279(1):303–319. doi: 10.1006/jmbi.1998.1754. [DOI] [PubMed] [Google Scholar]
- Jian H., Schlick T., Vologodskii A. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. J Mol Biol. 1998 Nov 27;284(2):287–296. doi: 10.1006/jmbi.1998.2170. [DOI] [PubMed] [Google Scholar]
- Kim Y., Geiger J. H., Hahn S., Sigler P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature. 1993 Oct 7;365(6446):512–520. doi: 10.1038/365512a0. [DOI] [PubMed] [Google Scholar]
- Klenin K., Merlitz H., Langowski J. A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J. 1998 Feb;74(2 Pt 1):780–788. doi: 10.1016/S0006-3495(98)74003-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leroy J. L., Broseta D., Guéron M. Proton exchange and base-pair kinetics of poly(rA).poly(rU) and poly(rI).poly(rC). J Mol Biol. 1985 Jul 5;184(1):165–178. doi: 10.1016/0022-2836(85)90050-6. [DOI] [PubMed] [Google Scholar]
- McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
- Millar D. P., Ho K. M., Aroney M. J. Modification of DNA dynamics by platinum drug binding: a time-dependent fluorescence depolarization study of the interaction of cis- and trans-diamminedichloroplatinum(II) with DNA. Biochemistry. 1988 Nov 15;27(23):8599–8606. doi: 10.1021/bi00423a014. [DOI] [PubMed] [Google Scholar]
- Olson W. K. Simulating DNA at low resolution. Curr Opin Struct Biol. 1996 Apr;6(2):242–256. doi: 10.1016/s0959-440x(96)80082-0. [DOI] [PubMed] [Google Scholar]
- Packer M. J., Hunter C. A. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. J Mol Biol. 1998 Jul 17;280(3):407–420. doi: 10.1006/jmbi.1998.1865. [DOI] [PubMed] [Google Scholar]
- Schlick T. Modeling superhelical DNA: recent analytical and dynamic approaches. Curr Opin Struct Biol. 1995 Apr;5(2):245–262. doi: 10.1016/0959-440x(95)80083-2. [DOI] [PubMed] [Google Scholar]
- Schlick T., Olson W. K. Supercoiled DNA energetics and dynamics by computer simulation. J Mol Biol. 1992 Feb 20;223(4):1089–1119. doi: 10.1016/0022-2836(92)90263-j. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
- Tan R. K., Harvey S. C. Molecular mechanics model of supercoiled DNA. J Mol Biol. 1989 Feb 5;205(3):573–591. doi: 10.1016/0022-2836(89)90227-1. [DOI] [PubMed] [Google Scholar]
- Thomas J. C., Allison S. A., Appellof C. J., Schurr J. M. Torison dynamics and depolarization of fluorescence of linear macromolecules. II. Fluorescence polarization anisotropy measurements on a clean viral phi 29 DNA. Biophys Chem. 1980 Oct;12(2):177–188. doi: 10.1016/0301-4622(80)80050-0. [DOI] [PubMed] [Google Scholar]
- Wahl P., Paoletti J., Le Pecq J. B. Decay of fluorescence emission anisotropy of the ethidium bromide-DNA complex. Evidence for an internal motion in DNA. Proc Natl Acad Sci U S A. 1970 Feb;65(2):417–421. doi: 10.1073/pnas.65.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhurkin V. B., Ulyanov N. B., Gorin A. A., Jernigan R. L. Static and statistical bending of DNA evaluated by Monte Carlo simulations. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7046–7050. doi: 10.1073/pnas.88.16.7046. [DOI] [PMC free article] [PubMed] [Google Scholar]