Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2387–2399. doi: 10.1016/S0006-3495(99)77076-1

A system-based approach to modeling the ultrasound signal backscattered by red blood cells

I Fontaine I 1, M Bertrand 1, G Cloutier 1
PMCID: PMC1300516  PMID: 10545342

Abstract

A system-based model is proposed to describe and simulate the ultrasound signal backscattered by red blood cells (RBCs). The model is that of a space-invariant linear system that takes into consideration important biological tissue stochastic scattering properties as well as the characteristics of the ultrasound system. The formation of the ultrasound signal is described by a convolution integral involving a transducer transfer function, a scatterer prototype function, and a function representing the spatial arrangement of the scatterers. The RBCs are modeled as nonaggregating spherical scatterers, and the spatial distribution of the RBCs is determined using the Percus-Yevick packing factor. Computer simulations of the model are used to study the power backscattered by RBCs as a function of the hematocrit, the volume of the scatterers, and the frequency of the incident wave (2-500 MHz). Good agreement is obtained between the simulations and theoretical and experimental data for both Rayleigh and non-Rayleigh scattering conditions. In addition to these results, the renewal process theory is proposed to model the spatial arrangement of the scatterers. The study demonstrates that the system-based model is capable of accurately predicting important characteristics of the ultrasound signal backscattered by blood. The model is simple and flexible, and it appears to be superior to previous one- and two-dimensional simulation studies.

Full Text

The Full Text of this article is available as a PDF (164.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelsen B. A. A theoretical study of the scattering of ultrasound from blood. IEEE Trans Biomed Eng. 1980 Feb;27(2):61–67. doi: 10.1109/TBME.1980.326708. [DOI] [PubMed] [Google Scholar]
  2. Bamber J. C., Dickinson R. J. Ultrasonic B-scanning: a computer simulation. Phys Med Biol. 1980 May;25(3):463–479. doi: 10.1088/0031-9155/25/3/006. [DOI] [PubMed] [Google Scholar]
  3. Bascom P. A., Cobbold R. S. On a fractal packing approach for understanding ultrasonic backscattering from blood. J Acoust Soc Am. 1995 Dec;98(6):3040–3049. doi: 10.1121/1.413828. [DOI] [PubMed] [Google Scholar]
  4. Berger N. E., Lucas R. J., Twersky V. Polydisperse scattering theory and comparisons with data for red blood cells. J Acoust Soc Am. 1991 Mar;89(3):1394–1401. doi: 10.1121/1.400540. [DOI] [PubMed] [Google Scholar]
  5. Christopher D. A., Burns P. N., Starkoski B. G., Foster F. S. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation. Ultrasound Med Biol. 1997;23(7):997–1015. doi: 10.1016/s0301-5629(97)00076-8. [DOI] [PubMed] [Google Scholar]
  6. Gough W., Routh H. F., Williams R. P. Weak reflection of a wave by a one-dimensional array of randomly spaced elements, with reference to the scattering of ultrasound by blood. Phys Med Biol. 1988 Jul;33(7):793–804. doi: 10.1088/0031-9155/33/7/003. [DOI] [PubMed] [Google Scholar]
  7. Kuo I. Y., Shung K. K. High frequency ultrasonic backscatter from erythrocyte suspension. IEEE Trans Biomed Eng. 1994 Jan;41(1):29–34. doi: 10.1109/10.277268. [DOI] [PubMed] [Google Scholar]
  8. Lim B., Bascom P. A., Cobbold R. S. Particle and voxel approaches for simulating ultrasound backscattering from tissue. Ultrasound Med Biol. 1996;22(9):1237–1247. doi: 10.1016/s0301-5629(96)00145-7. [DOI] [PubMed] [Google Scholar]
  9. Lucas R. J., Twersky V. Inversion of ultrasonic scattering data for red blood cell suspensions under different flow conditions. J Acoust Soc Am. 1987 Sep;82(3):794–799. doi: 10.1121/1.395276. [DOI] [PubMed] [Google Scholar]
  10. Meunier J., Bertrand M. Echographic image mean gray level changes with tissue dynamics: a system-based model study. IEEE Trans Biomed Eng. 1995 Apr;42(4):403–410. doi: 10.1109/10.376133. [DOI] [PubMed] [Google Scholar]
  11. Mo L. Y., Cobbold R. S. A stochastic model of the backscattered Doppler ultrasound from blood. IEEE Trans Biomed Eng. 1986 Jan;33(1):20–27. doi: 10.1109/tbme.1986.325834. [DOI] [PubMed] [Google Scholar]
  12. Mo L. Y., Cobbold R. S. A unified approach to modeling the backscattered Doppler ultrasound from blood. IEEE Trans Biomed Eng. 1992 May;39(5):450–461. doi: 10.1109/10.135539. [DOI] [PubMed] [Google Scholar]
  13. Mo L. Y., Kuo I. Y., Shung K. K., Ceresne L., Cobbold R. S. Ultrasound scattering from blood with hematocrits up to 100%. IEEE Trans Biomed Eng. 1994 Jan;41(1):91–95. doi: 10.1109/10.277277. [DOI] [PubMed] [Google Scholar]
  14. Routh H. F., Gough W., Williams R. P. One-dimensional computer simulation of a wave incident on randomly distributed inhomogeneities with reference to the scattering of ultrasound by blood. Med Biol Eng Comput. 1987 Nov;25(6):667–671. doi: 10.1007/BF02447336. [DOI] [PubMed] [Google Scholar]
  15. Routh H. F., Williams R. P., Gough W. Weak reflection of ultrasound by elements arranged in the steps of a one-dimensional random walk, with reference to backscatter by blood. Med Biol Eng Comput. 1989 Mar;27(2):198–203. doi: 10.1007/BF02446230. [DOI] [PubMed] [Google Scholar]
  16. Shung K. K., Sigelmann R. A., Reid J. M. Scattering of ultrasound by blood. IEEE Trans Biomed Eng. 1976 Nov;23(6):460–467. doi: 10.1109/tbme.1976.324604. [DOI] [PubMed] [Google Scholar]
  17. Shung K. K., Yuan Y. W., Fei D. Y., Tarbell J. M. Effect of flow disturbance on ultrasonic backscatter from blood. J Acoust Soc Am. 1984 Apr;75(4):1265–1272. doi: 10.1121/1.390733. [DOI] [PubMed] [Google Scholar]
  18. Shwedyk E., Balasubramanian R., Scott R. N. A nonstationary model for the electromyogram. IEEE Trans Biomed Eng. 1977 Sep;24(5):417–424. doi: 10.1109/TBME.1977.326175. [DOI] [PubMed] [Google Scholar]
  19. Turnbull D. H., Starkoski B. G., Harasiewicz K. A., Semple J. L., From L., Gupta A. K., Sauder D. N., Foster F. S. A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med Biol. 1995;21(1):79–88. doi: 10.1016/0301-5629(94)00083-2. [DOI] [PubMed] [Google Scholar]
  20. Twersky V. Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. J Opt Soc Am. 1975 May;65(5):524–530. doi: 10.1364/josa.65.000524. [DOI] [PubMed] [Google Scholar]
  21. Weng X., Cloutier G., Pibarot P., Durand L. G. Comparison and simulation of different levels of erythrocyte aggregation with pig, horse, sheep, calf, and normal human blood. Biorheology. 1996 Jul-Oct;33(4-5):365–377. doi: 10.1016/0006-355x(96)00028-5. [DOI] [PubMed] [Google Scholar]
  22. Yuan Y. W., Shung K. K. Ultrasonic backscatter from flowing whole blood. I: Dependence on shear rate and hematocrit. J Acoust Soc Am. 1988 Jul;84(1):52–58. doi: 10.1121/1.397238. [DOI] [PubMed] [Google Scholar]
  23. Yuan Y. W., Shung K. K. Ultrasonic backscatter from flowing whole blood. II: Dependence on frequency and fibrinogen concentration. J Acoust Soc Am. 1988 Oct;84(4):1195–1200. doi: 10.1121/1.396620. [DOI] [PubMed] [Google Scholar]
  24. Zhang J., Rose J. L., Shung K. K. A computer model for simulating ultrasonic scattering in biological tissues with high scatterer concentration. Ultrasound Med Biol. 1994;20(9):903–913. doi: 10.1016/0301-5629(94)90050-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES