Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2411–2417. doi: 10.1016/S0006-3495(99)77078-5

A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM

JJ Tyson 1, CI Hong 1, CD Thron 1, B Novak 1
PMCID: PMC1300518  PMID: 20540926

Abstract

Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms persist with a period close to 1 day ("circadian"), but it is usually not exactly 24 h. Recent discoveries have uncovered stunning similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the per(L) mutant phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more primitive, light-activated switch.

Full Text

The Full Text of this article is available as a PDF (123.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allada R., White N. E., So W. V., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998 May 29;93(5):791–804. doi: 10.1016/s0092-8674(00)81440-3. [DOI] [PubMed] [Google Scholar]
  2. Bae K., Lee C., Sidote D., Chuang K. Y., Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998 Oct;18(10):6142–6151. doi: 10.1128/mcb.18.10.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bliss R. D., Painter P. R., Marr A. G. Role of feedback inhibition in stabilizing the classical operon. J Theor Biol. 1982 Jul 21;97(2):177–193. doi: 10.1016/0022-5193(82)90098-4. [DOI] [PubMed] [Google Scholar]
  4. Coté G. G., Brody S. Circadian rhythms in Drosophila melanogaster: analysis of period as a function of gene dosage at the per (period) locus. J Theor Biol. 1986 Aug 21;121(4):487–503. doi: 10.1016/s0022-5193(86)80104-7. [DOI] [PubMed] [Google Scholar]
  5. Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
  6. Gekakis N., Saez L., Delahaye-Brown A. M., Myers M. P., Sehgal A., Young M. W., Weitz C. J. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995 Nov 3;270(5237):811–815. doi: 10.1126/science.270.5237.811. [DOI] [PubMed] [Google Scholar]
  7. Goldbeter A. A model for circadian oscillations in the Drosophila period protein (PER). Proc Biol Sci. 1995 Sep 22;261(1362):319–324. doi: 10.1098/rspb.1995.0153. [DOI] [PubMed] [Google Scholar]
  8. Goodwin B. C. Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul. 1965;3:425–438. doi: 10.1016/0065-2571(65)90067-1. [DOI] [PubMed] [Google Scholar]
  9. Griffith J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol. 1968 Aug;20(2):202–208. doi: 10.1016/0022-5193(68)90189-6. [DOI] [PubMed] [Google Scholar]
  10. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  11. Huang Z. J., Curtin K. D., Rosbash M. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science. 1995 Feb 24;267(5201):1169–1172. doi: 10.1126/science.7855598. [DOI] [PubMed] [Google Scholar]
  12. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  13. KALMUS H., WIGGLESWORTH L. A. Shock excited systems as models for biological rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:211–216. doi: 10.1101/sqb.1960.025.01.020. [DOI] [PubMed] [Google Scholar]
  14. Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. doi: 10.1016/s0092-8674(00)81225-8. [DOI] [PubMed] [Google Scholar]
  15. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee C., Parikh V., Itsukaichi T., Bae K., Edery I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science. 1996 Mar 22;271(5256):1740–1744. doi: 10.1126/science.271.5256.1740. [DOI] [PubMed] [Google Scholar]
  17. Leloup J. C., Goldbeter A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms. 1998 Feb;13(1):70–87. doi: 10.1177/074873098128999934. [DOI] [PubMed] [Google Scholar]
  18. Myers M. P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996 Mar 22;271(5256):1736–1740. doi: 10.1126/science.271.5256.1736. [DOI] [PubMed] [Google Scholar]
  19. Myers M. P., Wager-Smith K., Wesley C. S., Young M. W., Sehgal A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science. 1995 Nov 3;270(5237):805–808. doi: 10.1126/science.270.5237.805. [DOI] [PubMed] [Google Scholar]
  20. Pavlidis T. A model for circadian clocks. Bull Math Biophys. 1967 Dec;29(4):781–791. doi: 10.1007/BF02476928. [DOI] [PubMed] [Google Scholar]
  21. Pittendrigh C. S. Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1762–1767. doi: 10.1073/pnas.58.4.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998 Jul 10;94(1):83–95. doi: 10.1016/s0092-8674(00)81224-6. [DOI] [PubMed] [Google Scholar]
  23. Ruoff P., Rensing L., Kommedal R., Mohsenzadeh S. Modeling temperature compensation in chemical and biological oscillators. Chronobiol Int. 1997 Sep;14(5):499–510. doi: 10.3109/07420529709001471. [DOI] [PubMed] [Google Scholar]
  24. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
  25. Scheper T., Klinkenberg D., Pennartz C., van Pelt J. A mathematical model for the intracellular circadian rhythm generator. J Neurosci. 1999 Jan 1;19(1):40–47. doi: 10.1523/JNEUROSCI.19-01-00040.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994 Mar 18;263(5153):1603–1606. doi: 10.1126/science.8128246. [DOI] [PubMed] [Google Scholar]
  27. Sehgal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science. 1995 Nov 3;270(5237):808–810. doi: 10.1126/science.270.5237.808. [DOI] [PubMed] [Google Scholar]
  28. Suri V., Lanjuin A., Rosbash M. TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. EMBO J. 1999 Feb 1;18(3):675–686. doi: 10.1093/emboj/18.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vosshall L. B., Price J. L., Sehgal A., Saez L., Young M. W. Block in nuclear localization of period protein by a second clock mutation, timeless. Science. 1994 Mar 18;263(5153):1606–1609. doi: 10.1126/science.8128247. [DOI] [PubMed] [Google Scholar]
  30. WEVER R. Possibilities of phase-control, demonstrated by an electronic model. Cold Spring Harb Symp Quant Biol. 1960;25:197–206. doi: 10.1101/sqb.1960.025.01.018. [DOI] [PubMed] [Google Scholar]
  31. Wilsbacher L. D., Takahashi J. S. Circadian rhythms: molecular basis of the clock. Curr Opin Genet Dev. 1998 Oct;8(5):595–602. doi: 10.1016/s0959-437x(98)80017-8. [DOI] [PubMed] [Google Scholar]
  32. Winfree A. T. Integrated view of resetting a circadian clock. J Theor Biol. 1970 Sep;28(3):327–374. doi: 10.1016/0022-5193(70)90075-5. [DOI] [PubMed] [Google Scholar]
  33. Zeng H., Hardin P. E., Rosbash M. Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J. 1994 Aug 1;13(15):3590–3598. doi: 10.1002/j.1460-2075.1994.tb06666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zeng H., Qian Z., Myers M. P., Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. 1996 Mar 14;380(6570):129–135. doi: 10.1038/380129a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES