Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2534–2541. doi: 10.1016/s0006-3495(99)77088-8

Enhancement of HERG K(+) currents by Cd(2+) destabilization of the inactivated state

JP Johnson Jr 1, JR Balser 1, PB Bennett 1
PMCID: PMC1300528  PMID: 10545354

Abstract

We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 &mgr;M) of extracellular Cd(2+) increased outward currents through HERG channels; 200 &mgr;M Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 &mgr;M did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >/=500 &mgr;M shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site.

Full Text

The Full Text of this article is available as a PDF (139.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol. 1971 Oct;58(4):413–437. doi: 10.1085/jgp.58.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choy A. M., Lang C. C., Chomsky D. M., Rayos G. H., Wilson J. R., Roden D. M. Normalization of acquired QT prolongation in humans by intravenous potassium. Circulation. 1997 Oct 7;96(7):2149–2154. doi: 10.1161/01.cir.96.7.2149. [DOI] [PubMed] [Google Scholar]
  3. Elinder F., Madeja M., Arhem P. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol. 1996 Oct;108(4):325–332. doi: 10.1085/jgp.108.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Follmer C. H., Lodge N. J., Cullinan C. A., Colatsky T. J. Modulation of the delayed rectifier, IK, by cadmium in cat ventricular myocytes. Am J Physiol. 1992 Jan;262(1 Pt 1):C75–C83. doi: 10.1152/ajpcell.1992.262.1.C75. [DOI] [PubMed] [Google Scholar]
  6. Gilly W. F., Armstrong C. M. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol. 1982 Jun;79(6):965–996. doi: 10.1085/jgp.79.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Hammerland L. G., Parihar A. S., Nemeth E. F., Sanguinetti M. C. Voltage-activated potassium currents of rabbit osteoclasts: effects of extracellular calcium. Am J Physiol. 1994 Oct;267(4 Pt 1):C1103–C1111. doi: 10.1152/ajpcell.1994.267.4.C1103. [DOI] [PubMed] [Google Scholar]
  9. Ho W. K., Kim I., Lee C. O., Earm Y. E. Voltage-dependent blockade of HERG channels expressed in Xenopus oocytes by external Ca2+ and Mg2+. J Physiol. 1998 Mar 15;507(Pt 3):631–638. doi: 10.1111/j.1469-7793.1998.631bs.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho W. K., Kim I., Lee C. O., Youm J. B., Lee S. H., Earm Y. E. Blockade of HERG channels expressed in Xenopus laevis oocytes by external divalent cations. Biophys J. 1999 Apr;76(4):1959–1971. doi: 10.1016/S0006-3495(99)77355-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  12. Johnson J. P., Jr, Mullins F. M., Bennett P. B. Human ether-à-go-go-related gene K+ channel gating probed with extracellular ca2+. Evidence for two distinct voltage sensors. J Gen Physiol. 1999 Apr;113(4):565–580. doi: 10.1085/jgp.113.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jurman M. E., Boland L. M., Liu Y., Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov;17(5):876–881. [PubMed] [Google Scholar]
  14. Paquette T., Clay J. R., Ogbaghebriel A., Shrier A. Effects of divalent cations on the E-4031-sensitive repolarization current, I(Kr), in rabbit ventricular myocytes. Biophys J. 1998 Mar;74(3):1278–1285. doi: 10.1016/S0006-3495(98)77841-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Po S. S., Wang D. W., Yang I. C., Johnson J. P., Jr, Nie L., Bennett P. B. Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol. 1999 Feb;33(2):181–185. doi: 10.1097/00005344-199902000-00002. [DOI] [PubMed] [Google Scholar]
  16. Rampe D., Roy M. L., Dennis A., Brown A. M. A mechanism for the proarrhythmic effects of cisapride (Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett. 1997 Nov 3;417(1):28–32. doi: 10.1016/s0014-5793(97)01249-0. [DOI] [PubMed] [Google Scholar]
  17. Roy M., Dumaine R., Brown A. M. HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation. 1996 Aug 15;94(4):817–823. doi: 10.1161/01.cir.94.4.817. [DOI] [PubMed] [Google Scholar]
  18. Sanguinetti M. C., Curran M. E., Spector P. S., Keating M. T. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2208–2212. doi: 10.1073/pnas.93.5.2208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21;81(2):299–307. doi: 10.1016/0092-8674(95)90340-2. [DOI] [PubMed] [Google Scholar]
  20. Schönherr R., Heinemann S. H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol. 1996 Jun 15;493(Pt 3):635–642. doi: 10.1113/jphysiol.1996.sp021410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith P. L., Baukrowitz T., Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996 Feb 29;379(6568):833–836. doi: 10.1038/379833a0. [DOI] [PubMed] [Google Scholar]
  22. Spector P. S., Curran M. E., Zou A., Keating M. T., Sanguinetti M. C. Fast inactivation causes rectification of the IKr channel. J Gen Physiol. 1996 May;107(5):611–619. doi: 10.1085/jgp.107.5.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trudeau M. C., Warmke J. W., Ganetzky B., Robertson G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science. 1995 Jul 7;269(5220):92–95. doi: 10.1126/science.7604285. [DOI] [PubMed] [Google Scholar]
  24. Wang S., Liu S., Morales M. J., Strauss H. C., Rasmusson R. L. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol. 1997 Jul 1;502(Pt 1):45–60. doi: 10.1111/j.1469-7793.1997.045bl.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang S., Morales M. J., Liu S., Strauss H. C., Rasmusson R. L. Modulation of HERG affinity for E-4031 by [K+]o and C-type inactivation. FEBS Lett. 1997 Nov 3;417(1):43–47. doi: 10.1016/s0014-5793(97)01245-3. [DOI] [PubMed] [Google Scholar]
  26. Wang S., Morales M. J., Liu S., Strauss H. C., Rasmusson R. L. Time, voltage and ionic concentration dependence of rectification of h-erg expressed in Xenopus oocytes. FEBS Lett. 1996 Jul 1;389(2):167–173. doi: 10.1016/0014-5793(96)00570-4. [DOI] [PubMed] [Google Scholar]
  27. Warmke J. W., Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3438–3442. doi: 10.1073/pnas.91.8.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yang T., Snyders D. J., Roden D. M. Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res. 1997 Jun;80(6):782–789. doi: 10.1161/01.res.80.6.782. [DOI] [PubMed] [Google Scholar]
  29. Zagotta W. N., Hoshi T., Aldrich R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 1990 Oct 26;250(4980):568–571. doi: 10.1126/science.2122520. [DOI] [PubMed] [Google Scholar]
  30. Zou A., Xu Q. P., Sanguinetti M. C. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J Physiol. 1998 May 15;509(Pt 1):129–137. doi: 10.1111/j.1469-7793.1998.129bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES