Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2552–2562. doi: 10.1016/s0006-3495(99)77090-6

Zn(2+) modulation of neuronal transient K(+) current: fast and selective binding to the deactivated channels

CC Kuo 1, FP Chen 1
PMCID: PMC1300530  PMID: 10545356

Abstract

Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 &mgr;M, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current.

Full Text

The Full Text of this article is available as a PDF (163.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aniksztejn L., Charton G., Ben-Ari Y. Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res. 1987 Feb 24;404(1-2):58–64. doi: 10.1016/0006-8993(87)91355-2. [DOI] [PubMed] [Google Scholar]
  2. Assaf S. Y., Chung S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature. 1984 Apr 19;308(5961):734–736. doi: 10.1038/308734a0. [DOI] [PubMed] [Google Scholar]
  3. Bardoni R., Belluzzi O. Modifications of A-current kinetics in mammalian central neurones induced by extracellular zinc. J Physiol. 1994 Sep 15;479(Pt 3):389–400. doi: 10.1113/jphysiol.1994.sp020304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaulieu C., Dyck R., Cynader M. Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. Neuroreport. 1992 Oct;3(10):861–864. doi: 10.1097/00001756-199210000-00010. [DOI] [PubMed] [Google Scholar]
  5. Berg J. M., Godwin H. A. Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct. 1997;26:357–371. doi: 10.1146/annurev.biophys.26.1.357. [DOI] [PubMed] [Google Scholar]
  6. Boland L. M., Jurman M. E., Yellen G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys J. 1994 Mar;66(3 Pt 1):694–699. doi: 10.1016/s0006-3495(94)80843-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choi K. L., Aldrich R. W., Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5092–5095. doi: 10.1073/pnas.88.12.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson J. L., Kehl S. J. Changes of activation and inactivation gating of the transient potassium current of rat pituitary melanotrophs caused by micromolar Cd2+ and Zn2+. Can J Physiol Pharmacol. 1995 Jan;73(1):36–42. doi: 10.1139/y95-005. [DOI] [PubMed] [Google Scholar]
  9. Faber H., Braun K., Zuschratter W., Scheich H. System-specific distribution of zinc in the chick brain. A light- and electron-microscopic study using the Timm method. Cell Tissue Res. 1989 Nov;258(2):247–257. doi: 10.1007/BF00239445. [DOI] [PubMed] [Google Scholar]
  10. Frederickson C. J., Klitenick M. A., Manton W. I., Kirkpatrick J. B. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res. 1983 Aug 29;273(2):335–339. doi: 10.1016/0006-8993(83)90858-2. [DOI] [PubMed] [Google Scholar]
  11. Frederickson C. J. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. [DOI] [PubMed] [Google Scholar]
  12. Gooddy W., Hamilton E. I., Williams T. R. Spark-source mass spectrometry in the investigation of neurological disease. II. Element levels in brain, cerebrospinal fluid and blood: some observations on their abundance and significance. Brain. 1975 Mar;98(1):65–70. doi: 10.1093/brain/98.1.65. [DOI] [PubMed] [Google Scholar]
  13. Gooddy W., Williams T. R., Nicholas D. Spark-source mass spectrometry in the investigation of neurological disease. Brain. 1974 Jun;97(2):327–336. doi: 10.1093/brain/97.1.327. [DOI] [PubMed] [Google Scholar]
  14. Harrison N. L., Radke H. K., Talukder G., Ffrench-Mullen J. M. Zinc modulates transient outward current gating in hippocampal neurons. Receptors Channels. 1993;1(2):153–163. [PubMed] [Google Scholar]
  15. Haug F. M. Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie. 1967;8(4):355–368. doi: 10.1007/BF00401978. [DOI] [PubMed] [Google Scholar]
  16. Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
  17. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  18. Howell G. A., Welch M. G., Frederickson C. J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature. 1984 Apr 19;308(5961):736–738. doi: 10.1038/308736a0. [DOI] [PubMed] [Google Scholar]
  19. Huang R. C., Peng Y. W., Yau K. W. Zinc modulation of a transient potassium current and histochemical localization of the metal in neurons of the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11806–11810. doi: 10.1073/pnas.90.24.11806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuo C. C., Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol. 1993 Jul;466:657–682. [PMC free article] [PubMed] [Google Scholar]
  21. Kuo C. C. Imipramine inhibition of transient K+ current: an external open channel blocker preventing fast inactivation. Biophys J. 1998 Dec;75(6):2845–2857. doi: 10.1016/S0006-3495(98)77727-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  23. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  24. Ogielska E. M., Zagotta W. N., Hoshi T., Heinemann S. H., Haab J., Aldrich R. W. Cooperative subunit interactions in C-type inactivation of K channels. Biophys J. 1995 Dec;69(6):2449–2457. doi: 10.1016/S0006-3495(95)80114-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palm R., Hallmans G. Zinc concentrations in the cerebrospinal fluid of normal adults and patients with neurological diseases. J Neurol Neurosurg Psychiatry. 1982 Aug;45(8):685–690. doi: 10.1136/jnnp.45.8.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pérez-Clausell J., Danscher G. Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res. 1985 Jun 24;337(1):91–98. doi: 10.1016/0006-8993(85)91612-9. [DOI] [PubMed] [Google Scholar]
  27. Pérez-Clausell J. Distribution of terminal fields stained for zinc in the neocortex of the rat. J Chem Neuroanat. 1996 Aug;11(2):99–111. doi: 10.1016/0891-0618(96)00131-7. [DOI] [PubMed] [Google Scholar]
  28. Slomianka L. Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience. 1992;48(2):325–352. doi: 10.1016/0306-4522(92)90494-m. [DOI] [PubMed] [Google Scholar]
  29. Spires S., Begenisich T. Chemical properties of the divalent cation binding site on potassium channels. J Gen Physiol. 1992 Aug;100(2):181–193. doi: 10.1085/jgp.100.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spires S., Begenisich T. Modulation of potassium channel gating by external divalent cations. J Gen Physiol. 1994 Oct;104(4):675–692. doi: 10.1085/jgp.104.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Talukder G., Harrison N. L. On the mechanism of modulation of transient outward current in cultured rat hippocampal neurons by di- and trivalent cations. J Neurophysiol. 1995 Jan;73(1):73–79. doi: 10.1152/jn.1995.73.1.73. [DOI] [PubMed] [Google Scholar]
  32. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  33. Wooltorton J. R., Mathie A. Block of potassium currents in rat isolated sympathetic neurones by tricyclic antidepressants and structurally related compounds. Br J Pharmacol. 1993 Nov;110(3):1126–1132. doi: 10.1111/j.1476-5381.1993.tb13931.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES