Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2612–2629. doi: 10.1016/S0006-3495(99)77095-5

Physical and biological properties of cationic triesters of phosphatidylcholine

RC MacDonald 1, GW Ashley 1, MM Shida 1, VA Rakhmanova 1, YS Tarahovsky 1, DP Pantazatos 1, MT Kennedy 1, EV Pozharski 1, KA Baker 1, RD Jones 1, HS Rosenzweig 1, KL Choi 1, R Qiu 1, TJ McIntosh 1
PMCID: PMC1300535  PMID: 10545361

Abstract

The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective.

Full Text

The Full Text of this article is available as a PDF (310.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberle A. M., Bennett M. J., Malone R. W., Nantz M. H. The counterion influence on cationic lipid-mediated transfection of plasmid DNA. Biochim Biophys Acta. 1996 Feb 16;1299(3):281–283. doi: 10.1016/0005-2760(95)00230-8. [DOI] [PubMed] [Google Scholar]
  2. Akao T., Nakayama T., Takeshia K., Ito A. Design of a new cationic amphiphile with efficient DNA-transfection ability. Biochem Mol Biol Int. 1994 Nov;34(5):915–920. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Bailey A. L., Cullis P. R. Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry. 1997 Feb 18;36(7):1628–1634. doi: 10.1021/bi961173x. [DOI] [PubMed] [Google Scholar]
  5. Bangham A. D., Standish M. M., Watkins J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6. [DOI] [PubMed] [Google Scholar]
  6. Barber K., Mala R. R., Lambert M. P., Qiu R., MacDonald R. C., Klein W. L. Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci Lett. 1996 Mar 22;207(1):17–20. doi: 10.1016/0304-3940(96)12497-6. [DOI] [PubMed] [Google Scholar]
  7. Barthel F., Remy J. S., Loeffler J. P., Behr J. P. Gene transfer optimization with lipospermine-coated DNA. DNA Cell Biol. 1993 Jul-Aug;12(6):553–560. doi: 10.1089/dna.1993.12.553. [DOI] [PubMed] [Google Scholar]
  8. Bennett C. F., Chiang M. Y., Chan H., Shoemaker J. E., Mirabelli C. K. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol. 1992 Jun;41(6):1023–1033. [PubMed] [Google Scholar]
  9. Bichko V., Netter H. J., Taylor J. Introduction of hepatitis delta virus into animal cell lines via cationic liposomes. J Virol. 1994 Aug;68(8):5247–5252. doi: 10.1128/jvi.68.8.5247-5252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blaurock A. E., Worthington C. R. Treatment of low angle x-ray data from planar and concentric multilayered structures. Biophys J. 1966 May;6(3):305–312. doi: 10.1016/S0006-3495(66)86658-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blume A., Eibl H. The influence of charge on bilayer membranes. Calorimetric investigations of phosphatidic acid bilayers. Biochim Biophys Acta. 1979 Nov 16;558(1):13–21. doi: 10.1016/0005-2736(79)90311-0. [DOI] [PubMed] [Google Scholar]
  12. Boukhnikachvili T., Aguerre-Chariol O., Airiau M., Lesieur S., Ollivon M., Vacus J. Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett. 1997 Jun 9;409(2):188–194. doi: 10.1016/s0014-5793(97)00505-x. [DOI] [PubMed] [Google Scholar]
  13. Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Debs R. J., Freedman L. P., Edmunds S., Gaensler K. L., Düzgünes N., Yamamoto K. R. Regulation of gene expression in vivo by liposome-mediated delivery of a purified transcription factor. J Biol Chem. 1990 Jun 25;265(18):10189–10192. [PubMed] [Google Scholar]
  15. Düzgüneş N., Goldstein J. A., Friend D. S., Felgner P. L. Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry. 1989 Nov 14;28(23):9179–9184. doi: 10.1021/bi00449a033. [DOI] [PubMed] [Google Scholar]
  16. Eastman S. J., Siegel C., Tousignant J., Smith A. E., Cheng S. H., Scheule R. K. Biophysical characterization of cationic lipid: DNA complexes. Biochim Biophys Acta. 1997 Apr 3;1325(1):41–62. doi: 10.1016/s0005-2736(96)00242-8. [DOI] [PubMed] [Google Scholar]
  17. Farhood H., Gao X., Son K., Yang Y. Y., Lazo J. S., Huang L., Barsoum J., Bottega R., Epand R. M. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann N Y Acad Sci. 1994 May 31;716:23–35. doi: 10.1111/j.1749-6632.1994.tb21701.x. [DOI] [PubMed] [Google Scholar]
  18. Farhood H., Serbina N., Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995 May 4;1235(2):289–295. doi: 10.1016/0005-2736(95)80016-9. [DOI] [PubMed] [Google Scholar]
  19. Felgner J. H., Kumar R., Sridhar C. N., Wheeler C. J., Tsai Y. J., Border R., Ramsey P., Martin M., Felgner P. L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994 Jan 28;269(4):2550–2561. [PubMed] [Google Scholar]
  20. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gao X., Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun. 1991 Aug 30;179(1):280–285. doi: 10.1016/0006-291x(91)91366-k. [DOI] [PubMed] [Google Scholar]
  22. Gershon H., Ghirlando R., Guttman S. B., Minsky A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry. 1993 Jul 20;32(28):7143–7151. doi: 10.1021/bi00079a011. [DOI] [PubMed] [Google Scholar]
  23. Gorman C. M., Aikawa M., Fox B., Fox E., Lapuz C., Michaud B., Nguyen H., Roche E., Sawa T., Wiener-Kronish J. P. Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Ther. 1997 Sep;4(9):983–992. doi: 10.1038/sj.gt.3300473. [DOI] [PubMed] [Google Scholar]
  24. Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 1995 Dec;13(12):527–537. doi: 10.1016/S0167-7799(00)89017-4. [DOI] [PubMed] [Google Scholar]
  25. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta. 1995 May 4;1235(2):305–312. doi: 10.1016/0005-2736(95)80018-b. [DOI] [PubMed] [Google Scholar]
  26. Herbette L., Marquardt J., Scarpa A., Blasie J. K. A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J. 1977 Nov;20(2):245–272. doi: 10.1016/S0006-3495(77)85547-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Holmen S. L., Vanbrocklin M. W., Eversole R. R., Stapleton S. R., Ginsberg L. C. Efficient lipid-mediated transfection of DNA into primary rat hepatocytes. In Vitro Cell Dev Biol Anim. 1995 May;31(5):347–351. doi: 10.1007/BF02634283. [DOI] [PubMed] [Google Scholar]
  28. Huang L., Farhood H., Serbina N., Teepe A. G., Barsoum J. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells. Biochem Biophys Res Commun. 1995 Dec 26;217(3):761–768. doi: 10.1006/bbrc.1995.2838. [DOI] [PubMed] [Google Scholar]
  29. Jähnig F. Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3691–3695. doi: 10.1073/pnas.80.12.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kendall D. A., MacDonald R. C. A fluorescence assay to monitor vesicle fusion and lysis. J Biol Chem. 1982 Dec 10;257(23):13892–13895. [PubMed] [Google Scholar]
  31. Koltover I., Salditt T., Rädler J. O., Safinya C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998 Jul 3;281(5373):78–81. doi: 10.1126/science.281.5373.78. [DOI] [PubMed] [Google Scholar]
  32. Leventis R., Silvius J. R. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta. 1990 Mar 30;1023(1):124–132. doi: 10.1016/0005-2736(90)90017-i. [DOI] [PubMed] [Google Scholar]
  33. Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
  34. Li L. H., Hui S. W. The effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim Biophys Acta. 1997 Jan 14;1323(1):105–116. doi: 10.1016/s0005-2736(96)00161-7. [DOI] [PubMed] [Google Scholar]
  35. MacDonald R. C., Carr V. M., MacDonald R. I., Carballo P. P., Fisher J. A. Interactions between lipid vesicles and cell membranes. Ann N Y Acad Sci. 1978;308:200–214. doi: 10.1111/j.1749-6632.1978.tb22023.x. [DOI] [PubMed] [Google Scholar]
  36. MacDonald R. C., Rakhmanova V. A., Choi K. L., Rosenzweig H. S., Lahiri M. K. O-ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci. 1999 Sep;88(9):896–904. doi: 10.1021/js990006q. [DOI] [PubMed] [Google Scholar]
  37. MacDonald R. C., Simon S. A., Baer E. Ionic influences on the phase transition of dipalmitoylphosphatidylserine. Biochemistry. 1976 Feb 24;15(4):885–891. doi: 10.1021/bi00649a025. [DOI] [PubMed] [Google Scholar]
  38. MacDonald R. C., Simon S. A. Lipid monolayer states and their relationships to bilayers. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4089–4093. doi: 10.1073/pnas.84.12.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Magee W. E., Talcott M. L., Straub S. X., Vriend C. Y. A comparison of negatively and positively charged liposomes containing entrapped polyinosinic-polycytidylic acid for interferon induction in mice. Biochim Biophys Acta. 1976 Dec 21;451(2):610–618. doi: 10.1016/0304-4165(76)90156-2. [DOI] [PubMed] [Google Scholar]
  40. Martin F. J., MacDonald R. C. Lipid vesicle-cell interactions. II. Induction of cell fusion. J Cell Biol. 1976 Sep;70(3):506–514. doi: 10.1083/jcb.70.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Martin F. J., MacDonald R. C. Lipid vesicle-cell interactions. III. Introduction of a new antigenic determinant into erythrocyte membranes. J Cell Biol. 1976 Sep;70(3):515–526. doi: 10.1083/jcb.70.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Martin F. J., MacDonald R. C. Phospholipid exchange between bilayer membrane vesicles. Biochemistry. 1976 Jan 27;15(2):321–327. doi: 10.1021/bi00647a013. [DOI] [PubMed] [Google Scholar]
  43. Martin F., MacDonald R. Liposomes can mimic virus membranes. Nature. 1974 Nov 8;252(5479):161–163. doi: 10.1038/252161a0. [DOI] [PubMed] [Google Scholar]
  44. McIntosh T. J., Magid A. D., Simon S. A. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry. 1989 Jan 10;28(1):17–25. doi: 10.1021/bi00427a004. [DOI] [PubMed] [Google Scholar]
  45. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  46. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  47. Morgan R. A., Anderson W. F. Human gene therapy. Annu Rev Biochem. 1993;62:191–217. doi: 10.1146/annurev.bi.62.070193.001203. [DOI] [PubMed] [Google Scholar]
  48. Nichols J. W. Thermodynamics and kinetics of phospholipid monomer-vesicle interaction. Biochemistry. 1985 Nov 5;24(23):6390–6398. doi: 10.1021/bi00344a011. [DOI] [PubMed] [Google Scholar]
  49. Pantazatos D. P., MacDonald R. C. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J Membr Biol. 1999 Jul 1;170(1):27–38. doi: 10.1007/s002329900535. [DOI] [PubMed] [Google Scholar]
  50. Qiu R., MacDonald R. C. A metastable state of high surface activity produced by sonication of phospholipids. Biochim Biophys Acta. 1994 May 11;1191(2):343–353. doi: 10.1016/0005-2736(94)90185-6. [DOI] [PubMed] [Google Scholar]
  51. Rakhmanova V. A., MacDonald R. C. A microplate fluorimetric assay for transfection of the beta-galactosidase reporter gene. Anal Biochem. 1998 Mar 15;257(2):234–237. doi: 10.1006/abio.1997.2537. [DOI] [PubMed] [Google Scholar]
  52. Rodicio M. R., Chater K. F. Small DNA-free liposomes stimulate transfection of streptomyces protoplasts. J Bacteriol. 1982 Sep;151(3):1078–1085. doi: 10.1128/jb.151.3.1078-1085.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rädler J. O., Koltover I., Salditt T., Safinya C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997 Feb 7;275(5301):810–814. doi: 10.1126/science.275.5301.810. [DOI] [PubMed] [Google Scholar]
  54. Sackmann E., Träuble H. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J Am Chem Soc. 1972 Jun 28;94(13):4482–4491. doi: 10.1021/ja00768a013. [DOI] [PubMed] [Google Scholar]
  55. Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Solodin I., Brown C. S., Bruno M. S., Chow C. Y., Jang E. H., Debs R. J., Heath T. D. A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery. Biochemistry. 1995 Oct 17;34(41):13537–13544. doi: 10.1021/bi00041a033. [DOI] [PubMed] [Google Scholar]
  57. Stamatatos L., Leventis R., Zuckermann M. J., Silvius J. R. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry. 1988 May 31;27(11):3917–3925. doi: 10.1021/bi00411a005. [DOI] [PubMed] [Google Scholar]
  58. Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
  59. Straub S. X., Garry R. F., Magee W. E. Interferon induction by poly (I): poly (C) enclosed in phospholipid particles. Infect Immun. 1974 Oct;10(4):783–792. doi: 10.1128/iai.10.4.783-792.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  61. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  62. Tyäuble H., Teubner M., Woolley P., Eibl H. Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys Chem. 1976 Jul;4(4):319–342. doi: 10.1016/0301-4622(76)80013-0. [DOI] [PubMed] [Google Scholar]
  63. Wheeler C. J., Sukhu L., Yang G., Tsai Y., Bustamente C., Felgner P., Norman J., Manthorpe M. Converting an alcohol to an amine in a cationic lipid dramatically alters the co-lipid requirement, cellular transfection activity and the ultrastructure of DNA-cytofectin complexes. Biochim Biophys Acta. 1996 Apr 3;1280(1):1–11. doi: 10.1016/0005-2736(95)00256-1. [DOI] [PubMed] [Google Scholar]
  64. Wilkins M. H., Blaurock A. E., Engelman D. M. Bilayer structure in membranes. Nat New Biol. 1971 Mar 17;230(11):72–76. doi: 10.1038/newbio230072a0. [DOI] [PubMed] [Google Scholar]
  65. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  66. Zabner J., Fasbender A. J., Moninger T., Poellinger K. A., Welsh M. J. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995 Aug 11;270(32):18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  67. Zhou F., Huang L. Liposome-mediated cytoplasmic delivery of proteins: an effective means of accessing the MHC class I-restricted antigen presentation pathway. Immunomethods. 1994 Jun;4(3):229–235. doi: 10.1006/immu.1994.1025. [DOI] [PubMed] [Google Scholar]
  68. Zimmerman S. B. The three-dimensional structure of DNA. Annu Rev Biochem. 1982;51:395–427. doi: 10.1146/annurev.bi.51.070182.002143. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES