Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2638–2642. doi: 10.1016/S0006-3495(99)77097-9

Free brownian motion of individual lipid molecules in biomembranes

A Sonnleitner 1, GJ Schutz 1, T Schmidt 1
PMCID: PMC1300537  PMID: 10545363

Abstract

The mobility of phospolipids in free-standing and supported membranes was investigated on the level of individual molecules. For the analysis of trajectories a new statistical treatment was developed that permitted us to clearly distinguish different types of diffusional motion. A freely diffusing subfraction of lipids within supported membranes was identified. Its mobility was characterized by a mean lateral diffusion constant of D(supp) = 4.6 &mgr;m(2)/s. In comparison, the mobility of lipids embedded in "free-standing" planar membranes yielded an increase in the mean diffusion constant by a factor of 4.5, D(free) = 20.6 &mgr;m(2)/s. This increase is attributed to the ultrathin (</=1 nm) lubricating water layer between membranes and glass support.

Full Text

The Full Text of this article is available as a PDF (105.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., Georgiou G. N., Morrison I. E., Stevenson G. V., Cherry R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci. 1992 Feb;101(Pt 2):415–425. doi: 10.1242/jcs.101.2.415. [DOI] [PubMed] [Google Scholar]
  2. Bayerl T. M., Bloom M. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J. 1990 Aug;58(2):357–362. doi: 10.1016/S0006-3495(90)82382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betzig E., Chichester R. J. Single molecules observed by near-field scanning optical microscopy. Science. 1993 Nov 26;262(5138):1422–1425. doi: 10.1126/science.262.5138.1422. [DOI] [PubMed] [Google Scholar]
  4. Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
  5. Ha T., Enderle T., Ogletree D. F., Chemla D. S., Selvin P. R., Weiss S. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6264–6268. doi: 10.1073/pnas.93.13.6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jia Y., Sytnik A., Li L., Vladimirov S., Cooperman B. S., Hochstrasser R. M. Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7932–7936. doi: 10.1073/pnas.94.15.7932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  9. Kühner M., Tampé R., Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates. Biophys J. 1994 Jul;67(1):217–226. doi: 10.1016/S0006-3495(94)80472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ladha S., Mackie A. R., Harvey L. J., Clark D. C., Lea E. J., Brullemans M., Duclohier H. Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations. Biophys J. 1996 Sep;71(3):1364–1373. doi: 10.1016/S0006-3495(96)79339-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sase I., Miyata H., Corrie J. E., Craik J. S., Kinosita K., Jr Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys J. 1995 Aug;69(2):323–328. doi: 10.1016/S0006-3495(95)79937-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saxton M. J. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997 Apr;72(4):1744–1753. doi: 10.1016/S0006-3495(97)78820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmidt T., Schütz G. J., Baumgartner W., Gruber H. J., Schindler H. Imaging of single molecule diffusion. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2926–2929. doi: 10.1073/pnas.93.7.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vaz W. L., Almeida P. F. Microscopic versus macroscopic diffusion in one-component fluid phase lipid bilayer membranes. Biophys J. 1991 Dec;60(6):1553–1554. doi: 10.1016/S0006-3495(91)82190-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Hulst N. F., Garcia-Parajo M. F., Moers M. H., Veerman J. A., Ruiter A. G. Near-field fluorescence imaging of genetic material: toward the molecular limit. J Struct Biol. 1997 Jul;119(2):222–231. doi: 10.1006/jsbi.1997.3888. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES