Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2665–2676. doi: 10.1016/s0006-3495(99)77101-8

The M.ADP.P(i) state is required for helical order in the thick filaments of skeletal muscle

S Xu 1, J Gu 1, T Rhodes 1, B Belknap 1, G Rosenbaum 1, G Offer 1, H White 1, LC Yu 1
PMCID: PMC1300541  PMID: 10545367

Abstract

The thick filaments of mammalian and avian skeletal muscle fibers are disordered at low temperature, but become increasingly ordered into an helical structure as the temperature is raised. Wray and colleagues (Schlichting, I., and J. Wray. 1986. J. Muscle Res. Cell Motil. 7:79; Wray, J., R. S. Goody, and K. Holmes. 1986. Adv. Exp. Med. Biol. 226:49-59) interpreted the transition as reflecting a coupling between nucleotide state and global conformation with M.ATP (disordered) being favored at 0 degrees C and M.ADP.P(i) (ordered) at 20 degrees C. However, hitherto this has been limited to a qualitative correlation and the biochemical state of the myosin heads required to obtain the helical array has not been unequivocally identified. In the present study we have critically tested whether the helical arrangement of the myosin heads requires the M.ADP.P(i) state. X-ray diffraction patterns were recorded from skinned rabbit psoas muscle fiber bundles stretched to non-overlap to avoid complications due to interaction with actin. The effect of temperature on the intensities of the myosin-based layer lines and on the phosphate burst of myosin hydrolyzing ATP in solution were examined under closely matched conditions. The results showed that the fraction of myosin mass in the helix closely followed that of the fraction of myosin in the M.ADP.P(i) state. Similar results were found by using a series of nucleoside triphosphates, including CTP and GTP. In addition, fibers treated by N-phenylmaleimide (Barnett, V. A., A. Ehrlich, and M. Schoenberg. 1992. Biophys. J. 61:358-367) so that the myosin was exclusively in the M.ATP state revealed no helical order. Diffraction patterns from muscle fibers in nucleotide-free and in ADP-containing solutions did not show helical structure. All these confirmed that in the presence of nucleotides, the M.NDP.P(i) state is required for helical order. We also found that the spacing of the third meridional reflection of the thick filament is linked to the helical order. The spacing in the ordered M.NDP.P(i) state is 143.4 A, but in the disordered state, it is 144. 2 A. This may be explained by the different interference functions for the myosin heads and the thick filament backbone.

Full Text

The Full Text of this article is available as a PDF (188.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagshaw C. R., Eccleston J. F., Eckstein F., Goody R. S., Gutfreund H., Trentham D. R. The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J. 1974 Aug;141(2):351–364. doi: 10.1042/bj1410351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnett V. A., Ehrlich A., Schoenberg M. Formation of ATP-insensitive weakly-binding crossbridges in single rabbit psoas fibers by treatment with phenylmaleimide or para-phenylenedimaleimide. Biophys J. 1992 Feb;61(2):358–367. doi: 10.1016/S0006-3495(92)81842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnett V. A., Thomas D. D. Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis. Biochemistry. 1987 Jan 13;26(1):314–323. doi: 10.1021/bi00375a044. [DOI] [PubMed] [Google Scholar]
  4. Biosca J. A., Greene L. E., Eisenberg E. Binding of ADP and 5'-adenylyl imidodiphosphate to rabbit muscle myofibrils. J Biol Chem. 1988 Oct 5;263(28):14231–14235. [PubMed] [Google Scholar]
  5. Brenner B., Schoenberg M., Chalovich J. M., Greene L. E., Eisenberg E. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288–7291. doi: 10.1073/pnas.79.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner B., Yu L. C., Chalovich J. M. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5739–5743. doi: 10.1073/pnas.88.13.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner B., Yu L. C., Greene L. E., Eisenberg E., Schoenberg M. Ca2+-sensitive cross-bridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers. Biophys J. 1986 Dec;50(6):1101–1108. doi: 10.1016/S0006-3495(86)83554-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brenner B., Yu L. C., Podolsky R. J. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys J. 1984 Sep;46(3):299–306. doi: 10.1016/S0006-3495(84)84026-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burgess S. A., Walker M. L., White H. D., Trinick J. Flexibility within myosin heads revealed by negative stain and single-particle analysis. J Cell Biol. 1997 Nov 3;139(3):675–681. doi: 10.1083/jcb.139.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chalovich J. M. Actin mediated regulation of muscle contraction. Pharmacol Ther. 1992;55(2):95–148. doi: 10.1016/0163-7258(92)90013-p. [DOI] [PubMed] [Google Scholar]
  11. Crowther R. A., Padrón R., Craig R. Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle. J Mol Biol. 1985 Aug 5;184(3):429–439. doi: 10.1016/0022-2836(85)90292-x. [DOI] [PubMed] [Google Scholar]
  12. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  13. Eccleston J. F., Trentham D. R. Magnesium ion dependent rabbit skeletal muscle myosin guanosine and thioguanosine triphosphatase mechanism and a novel guanosine diphosphatase reaction. Biochemistry. 1979 Jun 26;18(13):2896–2904. doi: 10.1021/bi00580a034. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  15. Elliott A., Offer G. Shape and flexibility of the myosin molecule. J Mol Biol. 1978 Aug 25;123(4):505–519. doi: 10.1016/0022-2836(78)90204-8. [DOI] [PubMed] [Google Scholar]
  16. Ferenczi M. A. Phosphate burst in permeable muscle fibers of the rabbit. Biophys J. 1986 Sep;50(3):471–477. doi: 10.1016/S0006-3495(86)83484-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fisher A. J., Smith C. A., Thoden J., Smith R., Sutoh K., Holden H. M., Rayment I. Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys J. 1995 Apr;68(4 Suppl):19S–28S. [PMC free article] [PubMed] [Google Scholar]
  18. Frisbie S. M., Chalovich J. M., Brenner B., Yu L. C. Modulation of cross-bridge affinity for MgGTP by Ca2+ in skinned fibers of rabbit psoas muscle. Biophys J. 1997 May;72(5):2255–2261. doi: 10.1016/S0006-3495(97)78869-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Frisbie S. M., Xu S., Chalovich J. M., Yu L. C. Characterizations of cross-bridges in the presence of saturating concentrations of MgAMP-PNP in rabbit permeabilized psoas muscle. Biophys J. 1998 Jun;74(6):3072–3082. doi: 10.1016/S0006-3495(98)78014-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gulick A. M., Bauer C. B., Thoden J. B., Rayment I. X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry. 1997 Sep 30;36(39):11619–11628. doi: 10.1021/bi9712596. [DOI] [PubMed] [Google Scholar]
  21. Harford J., Cantino M., Chew M., Denny R., Hudson L., Luther P., Mendelson R., Morris E., Squire J. Myosin crossbridge configurations in equilibrium states of vertebrate skeletal muscle. Heads swing axially or turn upside-down between resting and rigor. Adv Exp Med Biol. 1998;453:297–308. [PubMed] [Google Scholar]
  22. Haselgrove J. C. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J Mol Biol. 1975 Feb 15;92(1):113–143. doi: 10.1016/0022-2836(75)90094-7. [DOI] [PubMed] [Google Scholar]
  23. Herrmann C., Sleep J., Chaussepied P., Travers F., Barman T. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking. Biochemistry. 1993 Jul 20;32(28):7255–7263. doi: 10.1021/bi00079a023. [DOI] [PubMed] [Google Scholar]
  24. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  25. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  26. Irving M., Lombardi V., Piazzesi G., Ferenczi M. A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature. 1992 May 14;357(6374):156–158. doi: 10.1038/357156a0. [DOI] [PubMed] [Google Scholar]
  27. Johnson K. A., Taylor E. W. Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism. Biochemistry. 1978 Aug 22;17(17):3432–3442. doi: 10.1021/bi00610a002. [DOI] [PubMed] [Google Scholar]
  28. Kensler R. W., Stewart M. The relaxed crossbridge pattern in isolated rabbit psoas muscle thick filaments. J Cell Sci. 1993 Jul;105(Pt 3):841–848. doi: 10.1242/jcs.105.3.841. [DOI] [PubMed] [Google Scholar]
  29. Kraft T., Chalovich J. M., Yu L. C., Brenner B. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation. Biophys J. 1995 Jun;68(6):2404–2418. doi: 10.1016/S0006-3495(95)80423-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kress M., Huxley H. E., Faruqi A. R., Hendrix J. Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol. 1986 Apr 5;188(3):325–342. doi: 10.1016/0022-2836(86)90158-0. [DOI] [PubMed] [Google Scholar]
  31. Levine R. J., Chantler P. D., Kensler R. W. Arrangement of myosin heads on Limulus thick filaments. J Cell Biol. 1988 Nov;107(5):1739–1747. doi: 10.1083/jcb.107.5.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Levine R. J. Evidence for overlapping myosin heads on relaxed thick filaments of fish, frog, and scallop striated muscles. J Struct Biol. 1993 Mar-Apr;110(2):99–110. doi: 10.1006/jsbi.1993.1010. [DOI] [PubMed] [Google Scholar]
  33. Levine R. J., Kensler R. W., Yang Z., Stull J. T., Sweeney H. L. Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys J. 1996 Aug;71(2):898–907. doi: 10.1016/S0006-3495(96)79293-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lowy J., Popp D., Stewart A. A. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys J. 1991 Oct;60(4):812–824. doi: 10.1016/S0006-3495(91)82116-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ma Y. Z., Taylor E. W. Kinetic mechanism of myofibril ATPase. Biophys J. 1994 May;66(5):1542–1553. doi: 10.1016/S0006-3495(94)80945-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Malinchik S., Xu S., Yu L. C. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys J. 1997 Nov;73(5):2304–2312. doi: 10.1016/S0006-3495(97)78262-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Maw M. C., Rowe A. J. Fraying of A-filaments into three subfilaments. Nature. 1980 Jul 24;286(5771):412–414. doi: 10.1038/286412a0. [DOI] [PubMed] [Google Scholar]
  38. Mendelson R. A., Schneider D. K., Stone D. B. Conformations of myosin subfragment 1 ATPase intermediates from neutron and X-ray scattering. J Mol Biol. 1996 Feb 16;256(1):1–7. doi: 10.1006/jmbi.1996.0063. [DOI] [PubMed] [Google Scholar]
  39. Ostap E. M., Barnett V. A., Thomas D. D. Resolution of three structural states of spin-labeled myosin in contracting muscle. Biophys J. 1995 Jul;69(1):177–188. doi: 10.1016/S0006-3495(95)79888-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Padrón R., Alamo L., Murgich J., Craig R. Towards an atomic model of the thick filaments of muscle. J Mol Biol. 1998 Jan 9;275(1):35–41. doi: 10.1006/jmbi.1997.1448. [DOI] [PubMed] [Google Scholar]
  41. Pate E., Franks-Skiba K., White H., Cooke R. The use of differing nucleotides to investigate cross-bridge kinetics. J Biol Chem. 1993 May 15;268(14):10046–10053. [PubMed] [Google Scholar]
  42. Piazzesi G., Reconditi M., Dobbie I., Linari M., Boesecke P., Diat O., Irving M., Lombardi V. Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres. J Physiol. 1999 Jan 15;514(Pt 2):305–312. doi: 10.1111/j.1469-7793.1999.305ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Regnier M., Homsher E. The effect of ATP analogs on posthydrolytic and force development steps in skinned skeletal muscle fibers. Biophys J. 1998 Jun;74(6):3059–3071. doi: 10.1016/S0006-3495(98)78013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rome E., Offer G., Pepe F. A. X-ray diffraction of muscle labelled with antibody to C-protein. Nat New Biol. 1973 Aug 1;244(135):152–154. doi: 10.1038/newbio244152a0. [DOI] [PubMed] [Google Scholar]
  45. Sleep J. A., Hutton R. L. Actin mediated release of ATP from a myosin-ATP complex. Biochemistry. 1978 Dec 12;17(25):5423–5430. doi: 10.1021/bi00618a016. [DOI] [PubMed] [Google Scholar]
  46. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  47. Squire J. M. General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscles. J Mol Biol. 1972 Dec 14;72(1):125–138. doi: 10.1016/0022-2836(72)90074-5. [DOI] [PubMed] [Google Scholar]
  48. Stewart M., Kensler R. W. Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol. 1986 Dec 20;192(4):831–851. doi: 10.1016/0022-2836(86)90032-x. [DOI] [PubMed] [Google Scholar]
  49. Taylor E. W. Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and subfragment 1. Biochemistry. 1977 Feb 22;16(4):732–739. doi: 10.1021/bi00623a027. [DOI] [PubMed] [Google Scholar]
  50. Wakabayashi K., Tokunaga M., Kohno I., Sugimoto Y., Hamanaka T., Takezawa Y., Wakabayashi T., Amemiya Y. Small-angle synchrotron x-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science. 1992 Oct 16;258(5081):443–447. doi: 10.1126/science.1411537. [DOI] [PubMed] [Google Scholar]
  51. Wakabayashi T., Akiba T., Hirose K., Tomioka A., Tokunaga M., Suzuki M., Toyoshima C., Sutoh K., Yamamoto K., Matsumoto T. Temperature-induced change of thick filament and location of the functional sites of myosin. Adv Exp Med Biol. 1988;226:39–48. [PubMed] [Google Scholar]
  52. Walker M., Trinick J. Visualization of domains in native and nucleotide-trapped myosin heads by negative staining. J Muscle Res Cell Motil. 1988 Aug;9(4):359–366. doi: 10.1007/BF01773879. [DOI] [PubMed] [Google Scholar]
  53. White H. D., Belknap B., Webb M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry. 1997 Sep 30;36(39):11828–11836. doi: 10.1021/bi970540h. [DOI] [PubMed] [Google Scholar]
  54. White H. D. Kinetics of tryptophan fluorescence enhancement in myofibrils during ATP hydrolysis. J Biol Chem. 1985 Jan 25;260(2):982–986. [PubMed] [Google Scholar]
  55. Wray J. S., Goody R. S., Holmes K. C. Towards a molecular mechanism for the crossbridge cycle. Adv Exp Med Biol. 1988;226:49–59. [PubMed] [Google Scholar]
  56. Xie L., Li W. X., Rhodes T., White H., Schoenberg M. Transient kinetic analysis of N-phenylmaleimide-reacted myosin subfragment-1. Biochemistry. 1999 May 4;38(18):5925–5931. doi: 10.1021/bi981778o. [DOI] [PubMed] [Google Scholar]
  57. Xu S., Malinchik S., Gilroy D., Kraft T., Brenner B., Yu L. C. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys J. 1997 Nov;73(5):2292–2303. doi: 10.1016/S0006-3495(97)78261-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Xu S., Yu L. C., Schoenberg M. Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution. Biophys J. 1998 Mar;74(3):1110–1114. doi: 10.1016/S0006-3495(98)77829-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES