Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2717–2724. doi: 10.1016/S0006-3495(99)77105-5

Intercalation of proflavine and a platinum derivative of proflavine into double-helical Poly(A)

C Ciatto 1, ML D'Amico 1, G Natile 1, F Secco 1, M Venturini 1
PMCID: PMC1300545  PMID: 10545371

Abstract

The equilibria and kinetics of the interactions of proflavine (PR) and its platinum-containing derivative [PtCl(tmen)(2)HNC(13)H(7)(NHCH(2)CH(2))(2)](+) (PRPt) with double-stranded poly(A) have been investigated by spectrophotometry and Joule temperature-jump relaxation at ionic strength 0.1 M, 25 degrees C, and pH 5.2. Spectrophotometric measurements indicate that base-dye interactions are prevailing. T-jump experiments with polarized light showed that effects due to field-induced alignment could be neglected. Both of the investigated systems display two relaxation effects. The kinetic features of the reaction are discussed in terms of a two-step series mechanism in which a precursor complex DS(I) is formed in the fast step, which is then converted to a final complex in the slow step. The rate constants of the fast step are k(1) = (2.5 +/- 0.4) x 10(6) M(-1) s(-1), k(-1) = (2.4 +/- 0.1) x 10(3) s(-1) for poly(A)-PR and k(1) = (2.3 +/- 0.1) x 10(6) M(-1) s(-1), k(-1) = (1.6 +/- 0.2) x 10(3) s(-1) for poly(A)-PRPt. The rate constants for the slow step are k(2) = (4.5 +/- 0.5) x 10(2) s(-1), k(-2) = (1.7 +/- 0.1) x 10(2) s(-1) for poly(A)-PR and k(2) = 9.7 +/- 1.2 s(-1), k(-2) = 10.6 +/- 0.2 s(-1) for poly(A)-PRPt. Spectrophotometric measurements yield for the equilibrium constants and site size the values K = (4.5 +/- 0.1) x 10(3) M(-1), n = 1.3 +/- 0.5 for poly(A)-PR and K = (2.9 +/- 0.1) x 10(3) M(-1), n = 2.3 +/- 0.6 for poly(A)-PRPt. The values of k(1) are similar and lower than expected for diffusion-limited reactions. The values of k(-1) are similar as well. It is suggested that the formation of DS(I) involves only the proflavine residues in both systems. In contrast, the values of k(2) and k(-2) in poly(A)-PRPt are much lower than in poly(A)-PR. The results suggest that in the complex DS(II) of poly(A)-PRPt both proflavine and platinum residues are intercalated. In addition, a very slow process was detected and ascribed to the covalent binding of Pt(II) to the adenine.

Full Text

The Full Text of this article is available as a PDF (104.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowler B. E., Lippard S. J. Modulation of platinum antitumor drug binding to DNA by linked and free intercalators. Biochemistry. 1986 May 20;25(10):3031–3038. doi: 10.1021/bi00358a044. [DOI] [PubMed] [Google Scholar]
  2. Brabec V., Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345–5349. doi: 10.1073/pnas.90.11.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bresloff J. L., Crothers D. M. DNA-ethidium reaction kinetics: demonstration of direct ligand transfer between DNA binding sites. J Mol Biol. 1975 Jun 15;95(1):103–123. doi: 10.1016/0022-2836(75)90339-3. [DOI] [PubMed] [Google Scholar]
  4. Brown M. D., Ripley L. S., Hall D. H. A proflavin-induced frameshift hotspot in the thymidylate synthase gene of bacteriophage T4. Mutat Res. 1993 Apr;286(2):189–197. doi: 10.1016/0027-5107(93)90183-g. [DOI] [PubMed] [Google Scholar]
  5. Capranico G., Kohn K. W., Pommier Y. Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res. 1990 Nov 25;18(22):6611–6619. doi: 10.1093/nar/18.22.6611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corbett A. H., Hong D., Osheroff N. Exploiting mechanistic differences between drug classes to define functional drug interaction domains on topoisomerase II. Evidence that several diverse DNA cleavage-enhancing agents share a common site of action on the enzyme. J Biol Chem. 1993 Jul 5;268(19):14394–14398. [PubMed] [Google Scholar]
  7. De Isabella P., Capranico G., Palumbo M., Sissi C., Krapcho A. P., Zunino F. Sequence selectivity of topoisomerase II DNA cleavage stimulated by mitoxantrone derivatives: relationships to drug DNA binding and cellular effects. Mol Pharmacol. 1993 May;43(5):715–721. [PubMed] [Google Scholar]
  8. Diebler H., Secco F., Venturini M. The binding of Mg(II) and Ni(II) to synthetic polynucleotides. Biophys Chem. 1987 May 9;26(2-3):193–205. doi: 10.1016/0301-4622(87)80022-4. [DOI] [PubMed] [Google Scholar]
  9. Dourlent M., Hélène C. A quantitative analysis of proflavine binding to polyadenylic acid, polyuridylic acid, and transfer RNA. Eur J Biochem. 1971 Nov 11;23(1):86–95. doi: 10.1111/j.1432-1033.1971.tb01595.x. [DOI] [PubMed] [Google Scholar]
  10. Ferguson L. R., Denny W. A. The genetic toxicology of acridines. Mutat Res. 1991 Sep;258(2):123–160. doi: 10.1016/0165-1110(91)90006-h. [DOI] [PubMed] [Google Scholar]
  11. Fichtinger-Schepman A. M., Lohman P. H., Berends F., Reedijk J., van Oosterom A. T. Interactions of the antitumour drug cisplatin with DNA in vitro and in vivo. IARC Sci Publ. 1986;(78):83–99. [PubMed] [Google Scholar]
  12. Jovin T. M., Striker G. Chemical relaxation kinetic studies of E. coli RNA polymerase binding to poly [d(A--T)] using ethidium bromide as a fluorescence probe. Mol Biol Biochem Biophys. 1977;24:245–281. doi: 10.1007/978-3-642-81117-3_7. [DOI] [PubMed] [Google Scholar]
  13. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  14. Li H. J., Crothers D. M. Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. J Mol Biol. 1969 Feb 14;39(3):461–477. doi: 10.1016/0022-2836(69)90138-7. [DOI] [PubMed] [Google Scholar]
  15. Macgregor R. B., Jr, Clegg R. M., Jovin T. M. Pressure-jump study of the kinetics of ethidium bromide binding to DNA. Biochemistry. 1985 Sep 24;24(20):5503–5510. doi: 10.1021/bi00341a034. [DOI] [PubMed] [Google Scholar]
  16. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  17. Meyer-Almes F. J., Porschke D. Mechanism of intercalation into the DNA double helix by ethidium. Biochemistry. 1993 Apr 27;32(16):4246–4253. doi: 10.1021/bi00067a012. [DOI] [PubMed] [Google Scholar]
  18. Pizzocaro G., Salvioni R., Pasi M., Zanoni F., Milani A., Pilotti S., Monfardini S. Early resection of residual tumor during cisplatin, vinblastine, bleomycin combination chemotherapy in stage III and bulky stage II nonseminomatous testicular cancer. Cancer. 1985 Jul 15;56(2):249–255. doi: 10.1002/1097-0142(19850715)56:2<249::aid-cncr2820560207>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  19. Porschke D. Time-resolved analysis of macromolecular structures during reactions by stopped-flow electrooptics. Biophys J. 1998 Jul;75(1):528–537. doi: 10.1016/S0006-3495(98)77542-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. RICH A., DAVIES D. R., CRICK F. H., WATSON J. D. The molecular structure of polyadenylic acid. J Mol Biol. 1961 Feb;3:71–86. doi: 10.1016/s0022-2836(61)80009-0. [DOI] [PubMed] [Google Scholar]
  21. Ripley L. S., Dubins J. S., deBoer J. G., DeMarini D. M., Bogerd A. M., Kreuzer K. N. Hotspot sites for acridine-induced frameshift mutations in bacteriophage T4 correspond to sites of action of the T4 type II topoisomerase. J Mol Biol. 1988 Apr 20;200(4):665–680. doi: 10.1016/0022-2836(88)90479-2. [DOI] [PubMed] [Google Scholar]
  22. Schelhorn T., Kretz S., Zimmermann H. W. Reinvestigation of the binding of proflavine to DNA. Is intercalation the dominant binding effect? Cell Mol Biol. 1992 Jul;38(4):345–365. [PubMed] [Google Scholar]
  23. Schmechel D. E., Crothers D. M. Kinetic and hydrodynamic studies of the complex of proflavine with poly A-poly U. Biopolymers. 1971;10(3):465–480. doi: 10.1002/bip.360100304. [DOI] [PubMed] [Google Scholar]
  24. Schwarz G., Klose S., Balthasar W. Cooperative binding to linear biopolymers. 2. Thermodynamic analysis of the proflavine-poly(L-glutamic acid) system. Eur J Biochem. 1970 Feb;12(3):454–460. doi: 10.1111/j.1432-1033.1970.tb00872.x. [DOI] [PubMed] [Google Scholar]
  25. Wakelin L. P., Waring M. J. Kinetics of drug-DNA interaction. Dependence of the binding mechanism on structure of the ligand. J Mol Biol. 1980 Dec 5;144(2):183–214. doi: 10.1016/0022-2836(80)90032-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES