Abstract
Weak anharmonic coupling of two soft molecular vibrations is shown to cause pronounced temperature dependence of the corresponding resonance Raman bands. The developed theory is used to interpret the temperature dependence of the iron-histidine band of deoxyheme proteins and model compounds. It is shown that anharmonic coupling of the iron-histidine and heme doming vibrations must cause pronounced broadening of the band, its asymmetry, and shift of its maximum to the red upon heating. It also can lead to a structured shape of this band at room temperature. Proper consideration of the anharmonic coupling allows simulation of the temperature dependence of the iron-histidine band shape of horse heart myoglobin in the temperature interval of 10-300 K, using the minimum number of necessary parameters. Analysis of this temperature dependence clearly shows that the iron-histidine band of deoxyheme proteins is sensitive to the glass-liquid phase transition in the protein hydration shell, which takes place at 160-190 K.
Full Text
The Full Text of this article is available as a PDF (160.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abadan Y., Chien E. Y., Chu K., Eng C. D., Nienhaus G. U., Sligar S. G. Ligand binding to heme proteins. V. Light-induced relaxation in proximal mutants L89I and H97F of carbonmonoxymyoglobin. Biophys J. 1995 Jun;68(6):2497–2504. doi: 10.1016/S0006-3495(95)80432-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ansari A., Berendzen J., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Johnson J. B., Ormos P., Sauke T. B. Rebinding and relaxation in the myoglobin pocket. Biophys Chem. 1987 May 9;26(2-3):337–355. doi: 10.1016/0301-4622(87)80034-0. [DOI] [PubMed] [Google Scholar]
- Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
- Boffi A., Verzili D., Chiancone E., Leone M., Cupane A., Militello V., Vitrano E., Cordone L., Yu W., Di Iorio E. E. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics. Biophys J. 1994 Oct;67(4):1713–1723. doi: 10.1016/S0006-3495(94)80645-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosenbeck M., Schweitzer-Stenner R., Dreybrodt W. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode. Biophys J. 1992 Jan;61(1):31–41. doi: 10.1016/S0006-3495(92)81813-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christian J. F., Unno M., Sage J. T., Champion P. M., Chien E., Sligar S. G. Spectroscopic effects of polarity and hydration in the distal heme pocket of deoxymyoglobin. Biochemistry. 1997 Sep 16;36(37):11198–11204. doi: 10.1021/bi9710075. [DOI] [PubMed] [Google Scholar]
- Chu K, Ernst RM, Frauenfelder H, Mourant JR, Nienhaus GU, Philipp R. Light-induced and thermal relaxation in a protein. Phys Rev Lett. 1995 Mar 27;74(13):2607–2610. doi: 10.1103/PhysRevLett.74.2607. [DOI] [PubMed] [Google Scholar]
- Cordone L., Cupane A., Leone M., Vitrano E., Bulone D. Interaction between external medium and haem pocket in myoglobin probed by low-temperature optical spectroscopy. J Mol Biol. 1988 Jan 5;199(1):213–218. doi: 10.1016/0022-2836(88)90390-7. [DOI] [PubMed] [Google Scholar]
- Cordone L., Cupane A., Leone M., Vitrano E. Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300-20 K. Relation with protein dynamics. Biophys Chem. 1986 Aug;24(3):259–275. doi: 10.1016/0301-4622(86)85031-1. [DOI] [PubMed] [Google Scholar]
- Cupane A., Leone M., Vitrano E., Cordone L., Hiltpold U. R., Winterhalter K. H., Yu W., Di Iorio E. E. Structure-dynamics-function relationships in Asian elephant (Elephas maximus) myoglobin. An optical spectroscopy and flash photolysis study on functionally important motions. Biophys J. 1993 Dec;65(6):2461–2472. doi: 10.1016/S0006-3495(93)81311-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cupane A., Leone M., Vitrano E. Protein dynamics: conformational disorder, vibrational coupling and anharmonicity in deoxy-hemoglobin and myoglobin. Eur Biophys J. 1993;21(6):385–391. doi: 10.1007/BF00185865. [DOI] [PubMed] [Google Scholar]
- Cusack S., Doster W. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990 Jul;58(1):243–251. doi: 10.1016/S0006-3495(90)82369-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demmel F., Doster W., Petry W., Schulte A. Vibrational frequency shifts as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J. 1997;26(4):327–335. doi: 10.1007/s002490050087. [DOI] [PubMed] [Google Scholar]
- Di Iorio E. E., Hiltpold U. R., Filipovic D., Winterhalter K. H., Gratton E., Vitrano E., Cupane A., Leone M., Cordone L. Protein dynamics. Comparative investigation on heme-proteins with different physiological roles. Biophys J. 1991 Mar;59(3):742–754. doi: 10.1016/S0006-3495(91)82287-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diehl M., Doster W., Petry W., Schober H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys J. 1997 Nov;73(5):2726–2732. doi: 10.1016/S0006-3495(97)78301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Egeberg K. D., Springer B. A., Martinis S. A., Sligar S. G., Morikis D., Champion P. M. Alteration of sperm whale myoglobin heme axial ligation by site-directed mutagenesis. Biochemistry. 1990 Oct 23;29(42):9783–9791. doi: 10.1021/bi00494a004. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
- Galkin O., Buchter S., Tabirian A., Schulte A. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy. Biophys J. 1997 Nov;73(5):2752–2763. doi: 10.1016/S0006-3495(97)78304-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelin B. R., Lee A. W., Karplus M. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. J Mol Biol. 1983 Dec 25;171(4):489–559. doi: 10.1016/0022-2836(83)90042-6. [DOI] [PubMed] [Google Scholar]
- Gilch H., Dreybrodt W., Schweitzer-Stenner R. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration. Biophys J. 1995 Jul;69(1):214–227. doi: 10.1016/S0006-3495(95)79893-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilch H., Schweitzer-Stenner R., Dreybrodt W. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode. Biophys J. 1993 Oct;65(4):1470–1485. doi: 10.1016/S0006-3495(93)81216-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann H., Parak F., Steigemann W., Petsko G. A., Ponzi D. R., Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4967–4971. doi: 10.1073/pnas.79.16.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann H., Zinser S., Komninos P., Schneider R. T., Nienhaus G. U., Parak F. X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7013–7016. doi: 10.1073/pnas.93.14.7013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry E. R., Eaton W. A., Hochstrasser R. M. Molecular dynamics simulations of cooling in laser-excited heme proteins. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8982–8986. doi: 10.1073/pnas.83.23.8982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Mar G. N., Budd D. L., Goff H. Assignment of proximal histidine proton NMR peaks in myoglobin and hemoglobin. Biochem Biophys Res Commun. 1977 Jul 11;77(1):104–110. doi: 10.1016/s0006-291x(77)80170-8. [DOI] [PubMed] [Google Scholar]
- Liddington R., Derewenda Z., Dodson G., Harris D. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Nature. 1988 Feb 25;331(6158):725–728. doi: 10.1038/331725a0. [DOI] [PubMed] [Google Scholar]
- Mayo K. H., Kucheida D., Parak F., Chien J. C. Structural dynamics of human deoxyhemoglobin and hemochrome investigated by nuclear gamma resonance absorption (Mössbauer) spectroscopy. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5294–5296. doi: 10.1073/pnas.80.17.5294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai K., Kitagawa T. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2033–2037. doi: 10.1073/pnas.77.4.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai K., La Mar G. N., Jue T., Bunn H. F. Proton magnetic resonance investigation of the influence of quaternary structure on iron-histidine bonding in deoxyhemoglobins. Biochemistry. 1982 Mar 2;21(5):842–847. doi: 10.1021/bi00534a005. [DOI] [PubMed] [Google Scholar]
- Nienhaus G. U., Mourant J. R., Chu K., Frauenfelder H. Ligand binding to heme proteins: the effect of light on ligand binding in myoglobin. Biochemistry. 1994 Nov 15;33(45):13413–13430. doi: 10.1021/bi00249a030. [DOI] [PubMed] [Google Scholar]
- Nienhaus G. U., Mourant J. R., Frauenfelder H. Spectroscopic evidence for conformational relaxation in myoglobin. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2902–2906. doi: 10.1073/pnas.89.7.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ondrias M. R., Rousseau D. L., Kitagawa T., Ikeda-Saito M., Inubushi T., Yonetani T. Quaternary structure changes in iron-cobalt hybrid hemoglobins detected by resonance Raman scattering. J Biol Chem. 1982 Aug 10;257(15):8766–8770. [PubMed] [Google Scholar]
- Ondrias M. R., Rousseau D. L., Simon S. R. Resonance Raman spectra of photodissociated carbonmonoxy hemoglobin and deoxy hemoglobin at 10 K. J Biol Chem. 1983 May 10;258(9):5638–5642. [PubMed] [Google Scholar]
- Ondrias M. R., Rousseau D. L., Simon S. R. Structural changes at the heme induced by freezing hemoglobin. Science. 1981 Aug 7;213(4508):657–659. doi: 10.1126/science.7256263. [DOI] [PubMed] [Google Scholar]
- Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
- Petrich J. W., Martin J. L., Houde D., Poyart C., Orszag A. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin. Biochemistry. 1987 Dec 1;26(24):7914–7923. doi: 10.1021/bi00398a056. [DOI] [PubMed] [Google Scholar]
- Post F., Doster W., Karvounis G., Settles M. Structural relaxation and nonexponential kinetics of CO-binding to horse myoglobin. Multiple flash photolysis experiments. Biophys J. 1993 Jun;64(6):1833–1842. doi: 10.1016/S0006-3495(93)81554-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powers L., Chance B., Chance M., Campbell B., Friedman J., Khalid S., Kumar C., Naqui A., Reddy K. S., Zhou Y. Kinetic, structural, and spectroscopic identification of geminate states of myoglobin: a ligand binding site on the reaction pathway. Biochemistry. 1987 Jul 28;26(15):4785–4796. doi: 10.1021/bi00389a028. [DOI] [PubMed] [Google Scholar]
- Rousseau D. L., Argade P. V. Metastable photoproducts from carbon monoxide myoglobin. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1310–1314. doi: 10.1073/pnas.83.5.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sassaroli M., Dasgupta S., Rousseau D. L. Cryogenic stabilization of myoglobin photoproducts. J Biol Chem. 1986 Oct 15;261(29):13704–13713. [PubMed] [Google Scholar]
- Schlichting I., Berendzen J., Phillips G. N., Jr, Sweet R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature. 1994 Oct 27;371(6500):808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
- Srajer V., Champion P. M. Investigations of optical line shapes and kinetic hole burning in myoglobin. Biochemistry. 1991 Jul 30;30(30):7390–7402. doi: 10.1021/bi00244a005. [DOI] [PubMed] [Google Scholar]
- Stavrov S. S. The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins. Biophys J. 1993 Nov;65(5):1942–1950. doi: 10.1016/S0006-3495(93)81265-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach P. J., Ansari A., Berendzen J., Braunstein D., Chu K., Cowen B. R., Ehrenstein D., Frauenfelder H., Johnson J. B., Lamb D. C. Ligand binding to heme proteins: connection between dynamics and function. Biochemistry. 1991 Apr 23;30(16):3988–4001. doi: 10.1021/bi00230a026. [DOI] [PubMed] [Google Scholar]
- Teng T. Y., Srajer V., Moffat K. Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures. Biochemistry. 1997 Oct 7;36(40):12087–12100. doi: 10.1021/bi971140x. [DOI] [PubMed] [Google Scholar]
- Teng T. Y., Srajer V., Moffat K. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nat Struct Biol. 1994 Oct;1(10):701–705. doi: 10.1038/nsb1094-701. [DOI] [PubMed] [Google Scholar]
- Wang C. M., Brinigar W. S. A correlation of the visible and Soret spectra of dioxygen- and carbon monoxide-heme complexes and five-coordinate heme complexes with the spectra of oxy-, carboxy-, and deoxyhemoglobins. Biochemistry. 1979 Oct 30;18(22):4960–4977. doi: 10.1021/bi00589a026. [DOI] [PubMed] [Google Scholar]
- Zhu L., Sage J. T., Champion P. M. Quantitative structural comparisons of heme protein crystals and solutions using resonance Raman spectroscopy. Biochemistry. 1993 Oct 19;32(41):11181–11185. doi: 10.1021/bi00092a030. [DOI] [PubMed] [Google Scholar]
