Abstract
The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.
Full Text
The Full Text of this article is available as a PDF (245.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts I. L., Nadassy K., Wodak S. J. Analysis of zinc binding sites in protein crystal structures. Protein Sci. 1998 Aug;7(8):1700–1716. doi: 10.1002/pro.5560070805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti P. Interaction of metal ions with carboxylic and carboxamide groups in protein structures. Protein Eng. 1990 Oct;4(1):49–56. doi: 10.1093/protein/4.1.49. [DOI] [PubMed] [Google Scholar]
- Chevrier B., Schalk C., D'Orchymont H., Rondeau J. M., Moras D., Tarnus C. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure. 1994 Apr 15;2(4):283–291. doi: 10.1016/s0969-2126(00)00030-7. [DOI] [PubMed] [Google Scholar]
- Christianson D. W. Structural biology of zinc. Adv Protein Chem. 1991;42:281–355. doi: 10.1016/s0065-3233(08)60538-0. [DOI] [PubMed] [Google Scholar]
- De Kerpel J. O., Ryde U. Protein strain in blue copper proteins studied by free energy perturbations. Proteins. 1999 Aug 1;36(2):157–174. doi: 10.1002/(sici)1097-0134(19990801)36:2<157::aid-prot3>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
- Dreyer M. K., Schulz G. E. Refined high-resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (class II) from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1996 Nov 1;52(Pt 6):1082–1091. doi: 10.1107/S0907444996009146. [DOI] [PubMed] [Google Scholar]
- Hall T. M., Porter J. A., Beachy P. A., Leahy D. J. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature. 1995 Nov 9;378(6553):212–216. doi: 10.1038/378212a0. [DOI] [PubMed] [Google Scholar]
- Holland D. R., Hausrath A. C., Juers D., Matthews B. W. Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci. 1995 Oct;4(10):1955–1965. doi: 10.1002/pro.5560041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland D. R., Tronrud D. E., Pley H. W., Flaherty K. M., Stark W., Jansonius J. N., McKay D. B., Matthews B. W. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry. 1992 Nov 24;31(46):11310–11316. doi: 10.1021/bi00161a008. [DOI] [PubMed] [Google Scholar]
- Holm Richard H., Kennepohl Pierre, Solomon Edward I. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev. 1996 Nov 7;96(7):2239–2314. doi: 10.1021/cr9500390. [DOI] [PubMed] [Google Scholar]
- Lipscomb William N., Sträter Norbert. Recent Advances in Zinc Enzymology. Chem Rev. 1996 Nov 7;96(7):2375–2434. doi: 10.1021/cr950042j. [DOI] [PubMed] [Google Scholar]
- Mangani S., Carloni P., Orioli P. Crystal structure of the complex between carboxypeptidase A and the biproduct analog inhibitor L-benzylsuccinate at 2.0 A resolution. J Mol Biol. 1992 Jan 20;223(2):573–578. doi: 10.1016/0022-2836(92)90671-6. [DOI] [PubMed] [Google Scholar]
- Monzingo A. F., Matthews B. W. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases. Biochemistry. 1984 Nov 20;23(24):5724–5729. doi: 10.1021/bi00319a010. [DOI] [PubMed] [Google Scholar]
- Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Shoham G., Rees D. C., Lipscomb W. N. Effects of pH on the structure and function of carboxypeptidase A: crystallographic studies. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7767–7771. doi: 10.1073/pnas.81.24.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thayer M. M., Flaherty K. M., McKay D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem. 1991 Feb 15;266(5):2864–2871. doi: 10.2210/pdb1ezm/pdb. [DOI] [PubMed] [Google Scholar]
- Wang Z., Quiocho F. A. Complexes of adenosine deaminase with two potent inhibitors: X-ray structures in four independent molecules at pH of maximum activity. Biochemistry. 1998 Jun 9;37(23):8314–8324. doi: 10.1021/bi980324o. [DOI] [PubMed] [Google Scholar]
- Zhang K., Chance B., Auld D. S., Larsen K. S., Vallee B. L. X-ray absorption fine structure study of the active site of zinc and cobalt carboxypeptidase A in their solution and crystalline forms. Biochemistry. 1992 Feb 4;31(4):1159–1168. doi: 10.1021/bi00119a027. [DOI] [PubMed] [Google Scholar]