Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2801–2812. doi: 10.1016/S0006-3495(99)77112-2

Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor

H Li 1, H Yamada 1, K Akasaka 1
PMCID: PMC1300552  PMID: 10545378

Abstract

The on-line high-pressure cell NMR technique was used to study pressure-induced changes in the tertiary structure and dynamics of a globular protein, basic pancreatic trypsin inhibitor (BPTI). Practically all the proton signals of BPTI were observed with (1)H two-dimensional NMR spectroscopy at 750 MHz at variable pressure between 1 and 2000 bar. Chemical shifts, nuclear Overhauser effect (NOE), and line shapes were used to analyze conformational and dynamic changes of the protein as functions of pressure. Linear, reversible, but nonuniform pressure-induced chemical shift changes of practically all the C(alpha) protons and side chain protons showed that the entire secondary and tertiary structures are altered by pressure within the folded ensemble of BPTI. The high field shift tendency of most side chain proton signals and the increase in NOE intensities of some specific side chain protons indicated a site-specific compaction of the tertiary structure. Pressure dependence of ring flip rates was deduced from resonance line shapes of the slices of the two-dimensional NMR spectrum for ring proton signals of Tyr-35 and Phe-45. The rates of the flip-flop motions were considerably reduced at high pressure, from which activation volumes were determined to be 85 +/- 20 A(3) (or 51.2 ml/mol) and 46 +/- 9 A(3) (or 27.7 ml/mol) for Tyr-35 and Phe-45, respectively, at 57 degrees C. The present experiments confirm that pressure affects the entire secondary and tertiary structures of a globular protein with specific compaction of a core, leading to quite significant changes in slow internal dynamics of a globular protein.

Full Text

The Full Text of this article is available as a PDF (755.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasaka K., Tezuka T., Yamada H. Pressure-induced changes in the folded structure of lysozyme. J Mol Biol. 1997 Sep 5;271(5):671–678. doi: 10.1006/jmbi.1997.1208. [DOI] [PubMed] [Google Scholar]
  2. Berndt K. D., Güntert P., Orbons L. P., Wüthrich K. Determination of a high-quality nuclear magnetic resonance solution structure of the bovine pancreatic trypsin inhibitor and comparison with three crystal structures. J Mol Biol. 1992 Oct 5;227(3):757–775. doi: 10.1016/0022-2836(92)90222-6. [DOI] [PubMed] [Google Scholar]
  3. Brunne R. M., van Gunsteren W. F. Dynamical properties of bovine pancreatic trypsin inhibitor from a molecular dynamics simulation at 5000 atm. FEBS Lett. 1993 Jun 1;323(3):215–217. doi: 10.1016/0014-5793(93)81342-w. [DOI] [PubMed] [Google Scholar]
  4. Chalikian T. V., Bresiauer K. J. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 1996 Nov;39(5):619–626. doi: 10.1002/(sici)1097-0282(199611)39:5<619::aid-bip1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  5. Gekko K., Hasegawa Y. Compressibility-structure relationship of globular proteins. Biochemistry. 1986 Oct 21;25(21):6563–6571. doi: 10.1021/bi00369a034. [DOI] [PubMed] [Google Scholar]
  6. Goossens K., Smeller L., Frank J., Heremans K. Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy. Eur J Biochem. 1996 Feb 15;236(1):254–262. doi: 10.1111/j.1432-1033.1996.00254.x. [DOI] [PubMed] [Google Scholar]
  7. Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
  8. Heremans K., Smeller L. Protein structure and dynamics at high pressure. Biochim Biophys Acta. 1998 Aug 18;1386(2):353–370. doi: 10.1016/s0167-4838(98)00102-2. [DOI] [PubMed] [Google Scholar]
  9. Inoue K., Yamada H., Imoto T., Akasaka K. High pressure NMR study of a small protein, gurmarin. J Biomol NMR. 1998 Nov;12(4):535–541. doi: 10.1023/a:1008374109437. [DOI] [PubMed] [Google Scholar]
  10. Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
  11. Kitchen D. B., Reed L. H., Levy R. M. Molecular dynamics simulation of solvated protein at high pressure. Biochemistry. 1992 Oct 20;31(41):10083–10093. doi: 10.1021/bi00156a031. [DOI] [PubMed] [Google Scholar]
  12. Kocher J. P., Prévost M., Wodak S. J., Lee B. Properties of the protein matrix revealed by the free energy of cavity formation. Structure. 1996 Dec 15;4(12):1517–1529. doi: 10.1016/s0969-2126(96)00157-8. [DOI] [PubMed] [Google Scholar]
  13. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  14. Kundrot C. E., Richards F. M. Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. J Mol Biol. 1987 Jan 5;193(1):157–170. doi: 10.1016/0022-2836(87)90634-6. [DOI] [PubMed] [Google Scholar]
  15. Li H., Yamada H., Akasaka K. Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor. Biochemistry. 1998 Feb 3;37(5):1167–1173. doi: 10.1021/bi972288j. [DOI] [PubMed] [Google Scholar]
  16. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  17. Pain R. H. Protein structure. New light on old defects. Nature. 1987 Mar 19;326(6110):247–247. doi: 10.1038/326247a0. [DOI] [PubMed] [Google Scholar]
  18. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  19. Prehoda K. E., Mooberry E. S., Markley J. L. Pressure denaturation of proteins: evaluation of compressibility effects. Biochemistry. 1998 Apr 28;37(17):5785–5790. doi: 10.1021/bi980384u. [DOI] [PubMed] [Google Scholar]
  20. Takeda N., Kato M., Taniguchi Y. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease A studied by FT-IR spectroscopy. Biochemistry. 1995 May 2;34(17):5980–5987. doi: 10.1021/bi00017a027. [DOI] [PubMed] [Google Scholar]
  21. Takeda N., Nakano K., Kato M., Taniguchi Y. Pressure-induced structural rearrangements of bovine pancreatic trypsin inhibitor studied by FTIR spectroscopy. Biospectroscopy. 1998;4(3):209–216. doi: 10.1002/(SICI)1520-6343(1998)4:3%3C209::AID-BSPY6%3E3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  22. Wagner G. Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure. FEBS Lett. 1980 Apr 7;112(2):280–284. doi: 10.1016/0014-5793(80)80198-0. [DOI] [PubMed] [Google Scholar]
  23. Wagner G., Braun W., Havel T. F., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987 Aug 5;196(3):611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  24. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  25. Wlodawer A., Deisenhofer J., Huber R. Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Jan 5;193(1):145–156. doi: 10.1016/0022-2836(87)90633-4. [DOI] [PubMed] [Google Scholar]
  26. Wlodawer A., Nachman J., Gilliland G. L., Gallagher W., Woodward C. Structure of form III crystals of bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Dec 5;198(3):469–480. doi: 10.1016/0022-2836(87)90294-4. [DOI] [PubMed] [Google Scholar]
  27. Wroblowski B., Díaz J. F., Heremans K., Engelborghs Y. Molecular mechanisms of pressure induced conformational changes in BPTI. Proteins. 1996 Aug;25(4):446–455. doi: 10.1002/prot.5. [DOI] [PubMed] [Google Scholar]
  28. Yamato T., Higo J., Seno Y., Go N. Conformational deformation in deoxymyoglobin by hydrostatic pressure. Proteins. 1993 Aug;16(4):327–340. doi: 10.1002/prot.340160403. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES