Abstract
Optical tweezers (infrared laser-based optical traps) have emerged as a powerful tool in molecular and cell biology. However, their usefulness has been limited, particularly in vivo, by the potential for damage to specimens resulting from the trapping laser. Relatively little is known about the origin of this phenomenon. Here we employed a wavelength-tunable optical trap in which the microscope objective transmission was fully characterized throughout the near infrared, in conjunction with a sensitive, rotating bacterial cell assay. Single cells of Escherichia coli were tethered to a glass coverslip by means of a single flagellum: such cells rotate at rates proportional to their transmembrane proton potential (. J. Mol. Biol. 138:541-561). Monitoring the rotation rates of cells subjected to laser illumination permits a rapid and quantitative measure of their metabolic state. Employing this assay, we characterized photodamage throughout the near-infrared region favored for optical trapping (790-1064 nm). The action spectrum for photodamage exhibits minima at 830 and 970 nm, and maxima at 870 and 930 nm. Damage was reduced to background levels under anaerobic conditions, implicating oxygen in the photodamage pathway. The intensity dependence for photodamage was linear, supporting a single-photon process. These findings may help guide the selection of lasers and experimental protocols best suited for optical trapping work.
Full Text
The Full Text of this article is available as a PDF (201.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashkin A., Dziedzic J. M., Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987 Dec 24;330(6150):769–771. doi: 10.1038/330769a0. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Turner L. Torque generated by the flagellar motor of Escherichia coli. Biophys J. 1993 Nov;65(5):2201–2216. doi: 10.1016/S0006-3495(93)81278-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berns M. W. A possible two-photon effect in vitro using a focused laser beam. Biophys J. 1976 Aug;16(8):973–977. doi: 10.1016/S0006-3495(76)85747-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Block S. M., Berg H. C. Successive incorporation of force-generating units in the bacterial rotary motor. 1984 May 31-Jun 6Nature. 309(5967):470–472. doi: 10.1038/309470a0. [DOI] [PubMed] [Google Scholar]
- Block S. M., Blair D. F., Berg H. C. Compliance of bacterial flagella measured with optical tweezers. Nature. 1989 Apr 6;338(6215):514–518. doi: 10.1038/338514a0. [DOI] [PubMed] [Google Scholar]
- Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J Bacteriol. 1983 Apr;154(1):312–323. doi: 10.1128/jb.154.1.312-323.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Block S. M., Segall J. E., Berg H. C. Impulse responses in bacterial chemotaxis. Cell. 1982 Nov;31(1):215–226. doi: 10.1016/0092-8674(82)90421-4. [DOI] [PubMed] [Google Scholar]
- Calmettes P. P., Berns M. W. Laser-induced multiphoton processes in living cells. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7197–7199. doi: 10.1073/pnas.80.23.7197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl T. A., Midden W. R., Hartman P. E. Pure singlet oxygen cytotoxicity for bacteria. Photochem Photobiol. 1987 Sep;46(3):345–352. doi: 10.1111/j.1751-1097.1987.tb04779.x. [DOI] [PubMed] [Google Scholar]
- Kuwajima G. Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol. 1988 Jul;170(7):3305–3309. doi: 10.1128/jb.170.7.3305-3309.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- König K., Liang H., Berns M. W., Tromberg B. J. Cell damage by near-IR microbeams. Nature. 1995 Sep 7;377(6544):20–21. doi: 10.1038/377020a0. [DOI] [PubMed] [Google Scholar]
- König K., Tadir Y., Patrizio P., Berns M. W., Tromberg B. J. Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa. Hum Reprod. 1996 Oct;11(10):2162–2164. doi: 10.1093/oxfordjournals.humrep.a019069. [DOI] [PubMed] [Google Scholar]
- Liang H., Vu K. T., Krishnan P., Trang T. C., Shin D., Kimel S., Berns M. W. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J. 1996 Mar;70(3):1529–1533. doi: 10.1016/S0006-3495(96)79716-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Cheng D. K., Sonek G. J., Berns M. W., Chapman C. F., Tromberg B. J. Evidence for localized cell heating induced by infrared optical tweezers. Biophys J. 1995 May;68(5):2137–2144. doi: 10.1016/S0006-3495(95)80396-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Sonek G. J., Berns M. W., Tromberg B. J. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J. 1996 Oct;71(4):2158–2167. doi: 10.1016/S0006-3495(96)79417-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lustmann J., Ulmansky M., Fuxbrunner A., Lewis A. Photoacoustic injury and bone healing following 193nm excimer laser ablation. Lasers Surg Med. 1992;12(4):390–396. doi: 10.1002/lsm.1900120407. [DOI] [PubMed] [Google Scholar]
- Manson M. D., Tedesco P. M., Berg H. C. Energetics of flagellar rotation in bacteria. J Mol Biol. 1980 Apr 15;138(3):541–561. doi: 10.1016/s0022-2836(80)80017-9. [DOI] [PubMed] [Google Scholar]
- Parkinson J. S. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J Bacteriol. 1978 Jul;135(1):45–53. doi: 10.1128/jb.135.1.45-53.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkinson J. S., Parker S. R., Talbert P. B., Houts S. E. Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J Bacteriol. 1983 Jul;155(1):265–274. doi: 10.1128/jb.155.1.265-274.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pryor W. A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. doi: 10.1146/annurev.ph.48.030186.003301. [DOI] [PubMed] [Google Scholar]
- Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
- Vorobjev I. A., Liang H., Wright W. H., Berns M. W. Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. Biophys J. 1993 Feb;64(2):533–538. doi: 10.1016/S0006-3495(93)81398-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yashima Y., McAuliffe D. J., Flotte T. J. Cell selectivity to laser-induced photoacoustic injury of skin. Lasers Surg Med. 1990;10(3):280–283. doi: 10.1002/lsm.1900100308. [DOI] [PubMed] [Google Scholar]
- Yashima Y., McAuliffe D. J., Jacques S. L., Flotte T. J. Laser-induced photoacoustic injury of skin: effect of inertial confinement. Lasers Surg Med. 1991;11(1):62–68. doi: 10.1002/lsm.1900110113. [DOI] [PubMed] [Google Scholar]