Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Nov;77(5):2887–2895. doi: 10.1016/S0006-3495(99)77120-1

Real-time imaging of the dynamics of secretory granules in growth cones

JR Abney 1, CD Meliza 1, B Cutler 1, M Kingma 1, JE Lochner 1, BA Scalettar 1
PMCID: PMC1300560  PMID: 10545386

Abstract

Secretory granules containing a hybrid protein consisting of the regulated secretory protein tissue plasminogen activator and an enhanced form of green fluorescent protein were tracked at high spatial resolution in growth cones of differentiated PC12 cells. Tracking shows that granules, unlike synaptic vesicles, generally are mobile in growth cones. Quantitative analysis of trajectories generated by granules revealed two dominant modes of motion: diffusive and directed. Diffusive motion was observed primarily in central and peripheral parts of growth cones, where most granules diffused two to four orders of magnitude more slowly than comparably sized spheres in dilute solution. Directed motion was observed primarily in proximal parts of growth cones, where a subset of granules underwent rapid, directed motion at average speeds comparable to those observed for granules in neurites. This high-resolution view of the dynamics of secretory granules in growth cones provides insight into granule organization and release at nerve terminals. In particular, the mobility of granules suggests that granules, unlike synaptic vesicles, are not tethered stably to cytoskeletal structures in nerve terminals. Moreover, the slow diffusive nature of this mobility suggests that secretory responses involving centrally distributed granules in growth cones will occur slowly, on a time scale of minutes or longer.

Full Text

The Full Text of this article is available as a PDF (232.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney J. R., Scalettar B. A., Owicki J. C. Self diffusion of interacting membrane proteins. Biophys J. 1989 May;55(5):817–833. doi: 10.1016/S0006-3495(89)82882-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander S. P., Rieder C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J Cell Biol. 1991 May;113(4):805–815. doi: 10.1083/jcb.113.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Augustine G. J., Adler E. M., Charlton M. P., Hans M., Swandulla D., Zipser K. Presynaptic calcium signals during neurotransmitter release: detection with fluorescent indicators and other calcium chelators. J Physiol Paris. 1992;86(1-3):129–134. doi: 10.1016/s0928-4257(05)80017-8. [DOI] [PubMed] [Google Scholar]
  4. Augustine G. J., Adler E. M., Charlton M. P. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann N Y Acad Sci. 1991;635:365–381. doi: 10.1111/j.1749-6632.1991.tb36505.x. [DOI] [PubMed] [Google Scholar]
  5. Bean A. J., Zhang X., Hökfelt T. Peptide secretion: what do we know? FASEB J. 1994 Jun;8(9):630–638. doi: 10.1096/fasebj.8.9.8005390. [DOI] [PubMed] [Google Scholar]
  6. Bennett M. K. Ca2+ and the regulation of neurotransmitter secretion. Curr Opin Neurobiol. 1997 Jun;7(3):316–322. doi: 10.1016/s0959-4388(97)80058-x. [DOI] [PubMed] [Google Scholar]
  7. Bittner M. A., Holz R. W. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J Biol Chem. 1992 Aug 15;267(23):16219–16225. [PubMed] [Google Scholar]
  8. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burke N. V., Han W., Li D., Takimoto K., Watkins S. C., Levitan E. S. Neuronal peptide release is limited by secretory granule mobility. Neuron. 1997 Nov;19(5):1095–1102. doi: 10.1016/s0896-6273(00)80400-6. [DOI] [PubMed] [Google Scholar]
  10. Ceccaldi P. E., Grohovaz F., Benfenati F., Chieregatti E., Greengard P., Valtorta F. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol. 1995 Mar;128(5):905–912. doi: 10.1083/jcb.128.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cormack B. P., Valdivia R. H., Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1 Spec No):33–38. doi: 10.1016/0378-1119(95)00685-0. [DOI] [PubMed] [Google Scholar]
  12. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gutiérrez L. M., Gil A., Viniegra S. Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells. Eur J Cell Biol. 1998 Aug;76(4):274–278. doi: 10.1016/S0171-9335(98)80005-8. [DOI] [PubMed] [Google Scholar]
  14. Harrison T. M., Chidgey M. A., Uff S. Novel markers for constitutive secretion used to show that tissue plasminogen activator is sorted to the regulated pathway in transfected PC12 cells. Cell Biol Int. 1996 Apr;20(4):293–299. doi: 10.1006/cbir.1996.0033. [DOI] [PubMed] [Google Scholar]
  15. Haubensak W., Narz F., Heumann R., Lessmann V. BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. J Cell Sci. 1998 Jun;111(Pt 11):1483–1493. doi: 10.1242/jcs.111.11.1483. [DOI] [PubMed] [Google Scholar]
  16. Henkel A. W., Simpson L. L., Ridge R. M., Betz W. J. Synaptic vesicle movements monitored by fluorescence recovery after photobleaching in nerve terminals stained with FM1-43. J Neurosci. 1996 Jun 15;16(12):3960–3967. doi: 10.1523/JNEUROSCI.16-12-03960.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hiraoka Y., Swedlow J. R., Paddy M. R., Agard D. A., Sedat J. W. Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena. Semin Cell Biol. 1991 Jun;2(3):153–165. [PubMed] [Google Scholar]
  18. Hirokawa N. Axonal transport and the cytoskeleton. Curr Opin Neurobiol. 1993 Oct;3(5):724–731. doi: 10.1016/0959-4388(93)90144-n. [DOI] [PubMed] [Google Scholar]
  19. Hirokawa N., Sobue K., Kanda K., Harada A., Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol. 1989 Jan;108(1):111–126. doi: 10.1083/jcb.108.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacobson K., Ishihara A., Inman R. Lateral diffusion of proteins in membranes. Annu Rev Physiol. 1987;49:163–175. doi: 10.1146/annurev.ph.49.030187.001115. [DOI] [PubMed] [Google Scholar]
  21. Kao H. P., Abney J. R., Verkman A. S. Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol. 1993 Jan;120(1):175–184. doi: 10.1083/jcb.120.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kraszewski K., Daniell L., Mundigl O., De Camilli P. Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence. J Neurosci. 1996 Oct 1;16(19):5905–5913. doi: 10.1523/JNEUROSCI.16-19-05905.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kreis T. E., Matteoni R., Hollinshead M., Tooze J. Secretory granules and endosomes show saltatory movement biased to the anterograde and retrograde directions, respectively, along microtubules in AtT20 cells. Eur J Cell Biol. 1989 Jun;49(1):128–139. [PubMed] [Google Scholar]
  24. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lang I., Scholz M., Peters R. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol. 1986 Apr;102(4):1183–1190. doi: 10.1083/jcb.102.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Llinás R. R. Calcium in synaptic transmission. Sci Am. 1982 Oct;247(4):56–65. doi: 10.1038/scientificamerican1082-56. [DOI] [PubMed] [Google Scholar]
  27. Lochner J. E., Kingma M., Kuhn S., Meliza C. D., Cutler B., Scalettar B. A. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell. 1998 Sep;9(9):2463–2476. doi: 10.1091/mbc.9.9.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oheim M., Loerke D., Stühmer W., Chow R. H. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J. 1999;28(2):91–101. doi: 10.1007/s002490050188. [DOI] [PubMed] [Google Scholar]
  30. Oheim M., Loerke D., Stühmer W., Chow R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 1998;27(2):83–98. doi: 10.1007/s002490050114. [DOI] [PubMed] [Google Scholar]
  31. Parmer R. J., Mahata M., Mahata S., Sebald M. T., O'Connor D. T., Miles L. A. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol Chem. 1997 Jan 17;272(3):1976–1982. doi: 10.1074/jbc.272.3.1976. [DOI] [PubMed] [Google Scholar]
  32. Parsons T. D., Coorssen J. R., Horstmann H., Almers W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron. 1995 Nov;15(5):1085–1096. doi: 10.1016/0896-6273(95)90097-7. [DOI] [PubMed] [Google Scholar]
  33. Patterson S. L., Grover L. M., Schwartzkroin P. A., Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron. 1992 Dec;9(6):1081–1088. doi: 10.1016/0896-6273(92)90067-n. [DOI] [PubMed] [Google Scholar]
  34. Pieribone V. A., Shupliakov O., Brodin L., Hilfiker-Rothenfluh S., Czernik A. J., Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493–497. doi: 10.1038/375493a0. [DOI] [PubMed] [Google Scholar]
  35. Pittman R. N., DiBenedetto A. J. PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix. J Neurochem. 1995 Feb;64(2):566–575. doi: 10.1046/j.1471-4159.1995.64020566.x. [DOI] [PubMed] [Google Scholar]
  36. Rivas R. J., Moore H. P. Spatial segregation of the regulated and constitutive secretory pathways. J Cell Biol. 1989 Jul;109(1):51–60. doi: 10.1083/jcb.109.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  38. Saxton M. J. Lateral diffusion in an archipelago. Dependence on tracer size. Biophys J. 1993 Apr;64(4):1053–1062. doi: 10.1016/S0006-3495(93)81471-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saxton M. J. Single-particle tracking: models of directed transport. Biophys J. 1994 Nov;67(5):2110–2119. doi: 10.1016/S0006-3495(94)80694-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Saxton M. J. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997 Apr;72(4):1744–1753. doi: 10.1016/S0006-3495(97)78820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scalettar B. A., Abney J. R., Owicki J. C. Theoretical comparison of the self diffusion and mutual diffusion of interacting membrane proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6726–6730. doi: 10.1073/pnas.85.18.6726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scalettar B. A., Swedlow J. R., Sedat J. W., Agard D. A. Dispersion, aberration and deconvolution in multi-wavelength fluorescence images. J Microsc. 1996 Apr;182(Pt 1):50–60. doi: 10.1046/j.1365-2818.1996.122402.x. [DOI] [PubMed] [Google Scholar]
  43. Smith S. J., Buchanan J., Osses L. R., Charlton M. P., Augustine G. J. The spatial distribution of calcium signals in squid presynaptic terminals. J Physiol. 1993 Dec;472:573–593. doi: 10.1113/jphysiol.1993.sp019963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Steyer J. A., Almers W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J. 1999 Apr;76(4):2262–2271. doi: 10.1016/S0006-3495(99)77382-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  46. Terakawa S., Manivannan S., Kumakura K. Evidence against the swelling hypothesis for initiation of exocytosis in terminals of chromaffin cell processes. J Physiol Paris. 1993;87(3):209–213. doi: 10.1016/0928-4257(93)90032-o. [DOI] [PubMed] [Google Scholar]
  47. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. 1991 May;14(5):165–170. doi: 10.1016/0166-2236(91)90097-e. [DOI] [PubMed] [Google Scholar]
  48. Wacker I., Kaether C., Krömer A., Migala A., Almers W., Gerdes H. H. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci. 1997 Jul;110(Pt 13):1453–1463. doi: 10.1242/jcs.110.13.1453. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES