Abstract
The proliferation of hydrodynamic modeling strategies to represent the shape of quasirigid macromolecules in solution has been hampered by ambiguities caused by size. Universal shape parameters, independent of size, developed originally for ellipsoid modeling, are now available for modeling using the bead-shell approximation via the algorithm SOLPRO. This paper validates such a "size-independent" bead-shell approach by comparison with the exact hydrodynamics of 1) an ellipsoid of revolution and 2) a general triaxial ellipsoid (semiaxial ratios a/b, b/c) based on a fit using the routine ELLIPSE (. J. Mol. Graph. 1:30-38) to the chimeric (human/mouse) IgG Fab' B72.3; a similar fit is obtained for other Fabs. Size-independent application of the bead-shell approximation yields errors of only approximately 1% in frictional ratio based shape functions and approximately 3% in the radius of gyration. With the viscosity increment, errors have been reduced to approximately 3%, representing a significant improvement on earlier procedures. Combination of the Perrin frictional ratio function with the experimentally measured sedimentation coefficient for the same Fab' from B72.3 yields an estimate for the molecular hydration of the Fab' fragment of approximately (0.43 +/- 0.07) g/g. This value is compared to values obtained in a similar way for deoxyhemoglobin (0.44) and ribonuclease (0.27). The application of SOLPRO to the shape analysis of more complex macromolecules is indicated, and we encourage such size-independent strategies. The utility of modern sedimentation data analysis software such as SVEDBERG, DCDT, LAMM, and MSTAR is also clearly demonstrated.
Full Text
The Full Text of this article is available as a PDF (379.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ban N., Escobar C., Hasel K. W., Day J., Greenwood A., McPherson A. Structure of an anti-idiotypic Fab against feline peritonitis virus-neutralizing antibody and a comparison with the complexed Fab. FASEB J. 1995 Jan;9(1):107–114. doi: 10.1096/fasebj.9.1.7821749. [DOI] [PubMed] [Google Scholar]
- Banfield M. J., King D. J., Mountain A., Brady R. L. VL:VH domain rotations in engineered antibodies: crystal structures of the Fab fragments from two murine antitumor antibodies and their engineered human constructs. Proteins. 1997 Oct;29(2):161–171. doi: 10.1002/(sici)1097-0134(199710)29:2<161::aid-prot4>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Behlke J., Ristau O. Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles. Biophys J. 1997 Jan;72(1):428–434. doi: 10.1016/S0006-3495(97)78683-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloomfield V., Dalton W. O., Van Holde K. E. Frictional coefficients of multisubunit structures. I. Theory. Biopolymers. 1967 Feb;5(2):135–148. doi: 10.1002/bip.1967.360050202. [DOI] [PubMed] [Google Scholar]
- Brady R. L., Edwards D. J., Hubbard R. E., Jiang J. S., Lange G., Roberts S. M., Todd R. J., Adair J. R., Emtage J. S., King D. J. Crystal structure of a chimeric Fab' fragment of an antibody binding tumour cells. J Mol Biol. 1992 Sep 5;227(1):253–264. doi: 10.1016/0022-2836(92)90695-g. [DOI] [PubMed] [Google Scholar]
- Carrasco B., García de la Torre J. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys J. 1999 Jun;76(6):3044–3057. doi: 10.1016/S0006-3495(99)77457-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creeth J. M., Harding S. E. Some observations on a new type of point average molecular weight. J Biochem Biophys Methods. 1982 Dec;7(1):25–34. doi: 10.1016/0165-022x(82)90033-1. [DOI] [PubMed] [Google Scholar]
- Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
- García de la Torre J., Carrasco B., Harding S. E. SOLPRO: theory and computer program for the prediction of SOLution PROperties of rigid macromolecules and bioparticles. Eur Biophys J. 1997;25(5-6):361–372. doi: 10.1007/s002490050049. [DOI] [PubMed] [Google Scholar]
- García de la Torre J., Harding S. E., Carrasco B. Calculation of NMR relaxation, covolume, and scattering-related properties of bead models using the SOLPRO computer program. Eur Biophys J. 1999;28(2):119–132. doi: 10.1007/s002490050191. [DOI] [PubMed] [Google Scholar]
- Hanisch F. G., Uhlenbruck G., Egge H., Peter-Katalinić J. A B72.3 second-generation-monoclonal antibody (CC49) defines the mucin-carried carbohydrate epitope Gal beta(1-3) [NeuAc alpha(2-6)]GalNAc. Biol Chem Hoppe Seyler. 1989 Jan;370(1):21–26. doi: 10.1515/bchm3.1989.370.1.21. [DOI] [PubMed] [Google Scholar]
- Harding S. E., Horton J. C., Cölfen H. The ELLIPS suite of macromolecular conformation algorithms. Eur Biophys J. 1997;25(5-6):347–359. doi: 10.1007/s002490050048. [DOI] [PubMed] [Google Scholar]
- Harding S. E., Horton J. C., Jones S., Thornton J. M., Winzor D. J. COVOL: an interactive program for evaluating second virial coefficients from the triaxial shape or dimensions of rigid macromolecules. Biophys J. 1999 May;76(5):2432–2438. doi: 10.1016/S0006-3495(99)77398-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding S. E., Johnson P. Physicochemical studies on turnip-yellow-mosaic virus. Homogeneity, relative molecular masses, hydrodynamic radii and concentration-dependence of parameters in non-dissociating solvents. Biochem J. 1985 Nov 1;231(3):549–555. doi: 10.1042/bj2310549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding S. E., Johnson P. The concentration-dependence of macromolecular parameters. Biochem J. 1985 Nov 1;231(3):543–547. doi: 10.1042/bj2310543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding S. E., Rowe A. J. Modeling biological macromolecules in solution. II. The general tri-axial ellipsoid. Biopolymers. 1983 Jul;22(7):1813–1829. doi: 10.1002/bip.360220714. [DOI] [PubMed] [Google Scholar]
- Harris L. J., Larson S. B., Skaletsky E., McPherson A. Comparison of the conformations of two intact monoclonal antibodies with hinges. Immunol Rev. 1998 Jun;163:35–43. doi: 10.1111/j.1600-065x.1998.tb01186.x. [DOI] [PubMed] [Google Scholar]
- Harris L. J., Skaletsky E., McPherson A. Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol. 1998 Feb 6;275(5):861–872. doi: 10.1006/jmbi.1997.1508. [DOI] [PubMed] [Google Scholar]
- King D. J., Adair J. R., Angal S., Low D. C., Proudfoot K. A., Lloyd J. C., Bodmer M. W., Yarranton G. T. Expression, purification and characterization of a mouse-human chimeric antibody and chimeric Fab' fragment. Biochem J. 1992 Jan 15;281(Pt 2):317–323. doi: 10.1042/bj2810317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumosinski T. F., Pessen H. Estimation of sedimentation coefficients of globular proteins: an application of small-angle X-ray scattering. Arch Biochem Biophys. 1982 Nov;219(1):89–100. doi: 10.1016/0003-9861(82)90137-0. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
- Perkins S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem. 1986 May 15;157(1):169–180. doi: 10.1111/j.1432-1033.1986.tb09653.x. [DOI] [PubMed] [Google Scholar]
- Pessen H., Kumosinski T. F., Timasheff S. N. The use of small-angle x-ray scattering to determine protein conformation. J Agric Food Chem. 1971 Jul-Aug;19(4):698–702. doi: 10.1021/jf60176a014. [DOI] [PubMed] [Google Scholar]
- Philo J. S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J. 1997 Jan;72(1):435–444. doi: 10.1016/S0006-3495(97)78684-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saul F. A., Poljak R. J. Crystal structure of human immunoglobulin fragment Fab New refined at 2.0 A resolution. Proteins. 1992 Nov;14(3):363–371. doi: 10.1002/prot.340140305. [DOI] [PubMed] [Google Scholar]
- Squire P. G., Himmel M. E. Hydrodynamics and protein hydration. Arch Biochem Biophys. 1979 Aug;196(1):165–177. doi: 10.1016/0003-9861(79)90563-0. [DOI] [PubMed] [Google Scholar]
- Zhou X. Z. Calculation of translational friction and intrinsic viscosity. II. Application to globular proteins. Biophys J. 1995 Dec;69(6):2298–2303. doi: 10.1016/S0006-3495(95)80100-1. [DOI] [PMC free article] [PubMed] [Google Scholar]