Abstract
We measured the lengths of actin filaments formed by spontaneous polymerization of highly purified actin monomers by fluorescence microscopy after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of approximately 7 microm (2600 subunits). This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: 1) filaments formed from a wide range of highly purified actin monomer concentrations, and 2) filaments formed from 24 microM actin over a range of CapZ concentrations.
Full Text
The Full Text of this article is available as a PDF (141.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burlacu S., Janmey P. A., Borejdo J. Distribution of actin filament lengths measured by fluorescence microscopy. Am J Physiol. 1992 Mar;262(3 Pt 1):C569–C577. doi: 10.1152/ajpcell.1992.262.3.C569. [DOI] [PubMed] [Google Scholar]
- Buxbaum R. E., Dennerll T., Weiss S., Heidemann S. R. F-actin and microtubule suspensions as indeterminate fluids. Science. 1987 Mar 20;235(4795):1511–1514. doi: 10.1126/science.2881354. [DOI] [PubMed] [Google Scholar]
- Buzan J. M., Frieden C. Yeast actin: polymerization kinetic studies of wild type and a poorly polymerizing mutant. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):91–95. doi: 10.1073/pnas.93.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D., Korn E. D. Steady state length distribution of F-actin under controlled fragmentation and mechanism of length redistribution following fragmentation. J Biol Chem. 1984 Aug 25;259(16):9987–9991. [PubMed] [Google Scholar]
- Casella J. F., Barron-Casella E. A., Torres M. A. Quantitation of Cap Z in conventional actin preparations and methods for further purification of actin. Cell Motil Cytoskeleton. 1995;30(2):164–170. doi: 10.1002/cm.970300208. [DOI] [PubMed] [Google Scholar]
- Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. A., Buhle E. L., Jr, Walker S. B., Tsong T. Y., Pollard T. D. Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry. 1983 Apr 26;22(9):2193–2202. doi: 10.1021/bi00278a021. [DOI] [PubMed] [Google Scholar]
- Coppin C. M., Leavis P. C. Quantitation of liquid-crystalline ordering in F-actin solutions. Biophys J. 1992 Sep;63(3):794–807. doi: 10.1016/S0006-3495(92)81647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De La Cruz E. M., Pollard T. D. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry. 1994 Dec 6;33(48):14387–14392. doi: 10.1021/bi00252a003. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. Co-operativity in protein-protein association. The structure and stability of the actin filament. J Mol Biol. 1989 Apr 5;206(3):465–474. doi: 10.1016/0022-2836(89)90494-4. [DOI] [PubMed] [Google Scholar]
- Frieden C., Goddette D. W. Polymerization of actin and actin-like systems: evaluation of the time course of polymerization in relation to the mechanism. Biochemistry. 1983 Dec 6;22(25):5836–5843. doi: 10.1021/bi00294a023. [DOI] [PubMed] [Google Scholar]
- Frieden C. Polymerization of actin: mechanism of the Mg2+-induced process at pH 8 and 20 degrees C. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6513–6517. doi: 10.1073/pnas.80.21.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa R., Kundra R., Fechheimer M. Formation of liquid crystals from actin filaments. Biochemistry. 1993 Nov 23;32(46):12346–12352. doi: 10.1021/bi00097a010. [DOI] [PubMed] [Google Scholar]
- Hitchcock-DeGregori S. E., Sampath P., Pollard T. D. Tropomyosin inhibits the rate of actin polymerization by stabilizing actin filaments. Biochemistry. 1988 Dec 27;27(26):9182–9185. doi: 10.1021/bi00426a016. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
- Kaufmann S., Käs J., Goldmann W. H., Sackmann E., Isenberg G. Talin anchors and nucleates actin filaments at lipid membranes. A direct demonstration. FEBS Lett. 1992 Dec 14;314(2):203–205. doi: 10.1016/0014-5793(92)80975-m. [DOI] [PubMed] [Google Scholar]
- Kawamura M., Maruyama K. A further study of electron microscopic particle length of F-actin polymerized in vitro. J Biochem. 1972 Jul;72(1):179–188. doi: 10.1093/oxfordjournals.jbchem.a129884. [DOI] [PubMed] [Google Scholar]
- Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Actin filament annealing in the presence of ATP and phalloidin. Biochemistry. 1993 Nov 23;32(46):12353–12357. doi: 10.1021/bi00097a011. [DOI] [PubMed] [Google Scholar]
- Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
- Käs J., Strey H., Tang J. X., Finger D., Ezzell R., Sackmann E., Janmey P. A. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J. 1996 Feb;70(2):609–625. doi: 10.1016/S0006-3495(96)79630-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer S. S. The crosslinking of actin and of tropomyosin by glutaraldehyde. Biochem Biophys Res Commun. 1972 Aug 21;48(4):967–976. doi: 10.1016/0006-291x(72)90703-6. [DOI] [PubMed] [Google Scholar]
- Lewis A. K., Bridgman P. C. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol. 1992 Dec;119(5):1219–1243. doi: 10.1083/jcb.119.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Gray R. O., Grasser W. A., Pollard T. D. Direct demonstration of actin filament annealing in vitro. J Cell Biol. 1988 Jun;106(6):1947–1954. doi: 10.1083/jcb.106.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986 Dec;103(6 Pt 2):2747–2754. doi: 10.1083/jcb.103.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rickard J. E., Sheterline P. Effect of ATP removal and inorganic phosphate on length redistribution of sheared actin filament populations. Evidence for a mechanism of end-to-end annealing. J Mol Biol. 1988 Jun 20;201(4):675–681. doi: 10.1016/0022-2836(88)90466-4. [DOI] [PubMed] [Google Scholar]
- Sampath P., Pollard T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry. 1991 Feb 19;30(7):1973–1980. doi: 10.1021/bi00221a034. [DOI] [PubMed] [Google Scholar]
- Schafer D. A., Jennings P. B., Cooper J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol. 1996 Oct;135(1):169–179. doi: 10.1083/jcb.135.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki A., Maeda T., Ito T. Formation of liquid crystalline phase of actin filament solutions and its dependence on filament length as studied by optical birefringence. Biophys J. 1991 Jan;59(1):25–30. doi: 10.1016/S0006-3495(91)82194-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobacman L. S., Korn E. D. The kinetics of actin nucleation and polymerization. J Biol Chem. 1983 Mar 10;258(5):3207–3214. [PubMed] [Google Scholar]
- Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol. 1990 Aug;111(2):453–463. doi: 10.1083/jcb.111.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegner A., Savko P. Fragmentation of actin filaments. Biochemistry. 1982 Apr 13;21(8):1909–1913. doi: 10.1021/bi00537a032. [DOI] [PubMed] [Google Scholar]
- Wegner A. Spontaneous fragmentation of actin filaments in physiological conditions. Nature. 1982 Mar 18;296(5854):266–267. doi: 10.1038/296266a0. [DOI] [PubMed] [Google Scholar]
- Xu J., Casella J. F., Pollard T. D. Effect of capping protein, CapZ, on the length of actin filaments and mechanical properties of actin filament networks. Cell Motil Cytoskeleton. 1999;42(1):73–81. doi: 10.1002/(SICI)1097-0169(1999)42:1<73::AID-CM7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]