Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):2930–2941. doi: 10.1016/S0006-3495(99)77126-2

Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia.

E Chudin 1, J Goldhaber 1, A Garfinkel 1, J Weiss 1, B Kogan 1
PMCID: PMC1300566  PMID: 10585917

Abstract

Ventricular fibrillation (VF), the major cause of sudden cardiac death, is typically preceded by ventricular tachycardia (VT), but the mechanisms underlying the transition from VT to VF are poorly understood. Intracellular Ca(2+) overload occurs during rapid heart rates typical of VT and is also known to promote arrhythmias. We therefore studied the role of intracellular Ca(2+) dynamics in the transition from VT to VF, using a combined experimental and mathematical modeling approach. Our results show that 1) rapid pacing of rabbit ventricular myocytes at 35 degrees C led to increased intracellular Ca(2+) levels and complex patterns of action potential (AP) configuration and the intracellular Ca(2+) transients; 2) the complex patterns of the Ca(2+) transient arose directly from the dynamics of intracellular Ca(2+) cycling, and were not merely passive responses to beat-to-beat alterations in AP; 3) the complex Ca(2+) dynamics were simulated in a modified version of the Luo-Rudy (LR) ventricular action potential with improved intracellular Ca(2+) dynamics, and showed good agreement with the experimental findings in isolated myocytes; and 4) when incorporated into simulated two-dimensional cardiac tissue, this action potential model produced a form of spiral wave breakup from VT to a VF-like state in which intracellular Ca(2+) dynamics played a key role through its influence on Ca(2+)-sensitive membrane currents such as I(Ca), I(NaCa), and I(ns(Ca)). To the extent that spiral wave breakup is useful as a model for the transition from VT to VF, these findings suggest that intracellular Ca(2+) dynamics may play an important role in the destabilization of VT and its degeneration into VF.

Full Text

The Full Text of this article is available as a PDF (525.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry W. H., Rasmussen C. A., Jr, Ishida H., Bridge J. H. External Na-independent Ca extrusion in cultured ventricular cells. Magnitude and functional significance. J Gen Physiol. 1986 Sep;88(3):393–411. doi: 10.1085/jgp.88.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassani J. W., Yuan W., Bers D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol. 1995 May;268(5 Pt 1):C1313–C1319. doi: 10.1152/ajpcell.1995.268.5.C1313. [DOI] [PubMed] [Google Scholar]
  3. Bridge J. H., Spitzer K. W., Ershler P. R. Relaxation of isolated ventricular cardiomyocytes by a voltage-dependent process. Science. 1988 Aug 12;241(4867):823–825. doi: 10.1126/science.3406740. [DOI] [PubMed] [Google Scholar]
  4. Cannell M. B., Cheng H., Lederer W. J. Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994 Nov;67(5):1942–1956. doi: 10.1016/S0006-3495(94)80677-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen P. S., Wolf P. D., Dixon E. G., Danieley N. D., Frazier D. W., Smith W. M., Ideker R. E. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988 Jun;62(6):1191–1209. doi: 10.1161/01.res.62.6.1191. [DOI] [PubMed] [Google Scholar]
  6. Chudin E., Garfinkel A., Weiss J., Karplus W., Kogan B. Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). Prog Biophys Mol Biol. 1998;69(2-3):225–236. doi: 10.1016/s0079-6107(98)00009-1. [DOI] [PubMed] [Google Scholar]
  7. Goldhaber J. I., Liu E. Excitation-contraction coupling in single guinea-pig ventricular myocytes exposed to hydrogen peroxide. J Physiol. 1994 May 15;477(Pt 1):135–147. doi: 10.1113/jphysiol.1994.sp020178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldhaber J. I., Parker J. M., Weiss J. N. Mechanisms of excitation-contraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes. J Physiol. 1991 Nov;443:371–386. doi: 10.1113/jphysiol.1991.sp018838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray R. A., Jalife J., Panfilov A., Baxter W. T., Cabo C., Davidenko J. M., Pertsov A. M. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation. 1995 May 1;91(9):2454–2469. doi: 10.1161/01.cir.91.9.2454. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Karma Alain. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos. 1994 Sep;4(3):461–472. doi: 10.1063/1.166024. [DOI] [PubMed] [Google Scholar]
  13. Koller M. L., Riccio M. L., Gilmour R. F., Jr Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol. 1998 Nov;275(5 Pt 2):H1635–H1642. doi: 10.1152/ajpheart.1998.275.5.H1635. [DOI] [PubMed] [Google Scholar]
  14. Koretsune Y., Marban E. Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation. 1989 Aug;80(2):369–379. doi: 10.1161/01.cir.80.2.369. [DOI] [PubMed] [Google Scholar]
  15. Lakatta E. G., Guarnieri T. Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol. 1993 Aug;4(4):473–489. doi: 10.1111/j.1540-8167.1993.tb01285.x. [DOI] [PubMed] [Google Scholar]
  16. Lipp P., Niggli E. A hierarchical concept of cellular and subcellular Ca(2+)-signalling. Prog Biophys Mol Biol. 1996;65(3):265–296. doi: 10.1016/s0079-6107(96)00014-4. [DOI] [PubMed] [Google Scholar]
  17. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  18. Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
  19. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995 May 19;268(5213):1042–1045. doi: 10.1126/science.7754383. [DOI] [PubMed] [Google Scholar]
  20. McCall E., Ginsburg K. S., Bassani R. A., Shannon T. R., Qi M., Samarel A. M., Bers D. M. Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes. Am J Physiol. 1998 Apr;274(4 Pt 2):H1348–H1360. doi: 10.1152/ajpheart.1998.274.4.H1348. [DOI] [PubMed] [Google Scholar]
  21. Merillat J. C., Lakatta E. G., Hano O., Guarnieri T. Role of calcium and the calcium channel in the initiation and maintenance of ventricular fibrillation. Circ Res. 1990 Nov;67(5):1115–1123. doi: 10.1161/01.res.67.5.1115. [DOI] [PubMed] [Google Scholar]
  22. Nikolic G., Bishop R. L., Singh J. B. Sudden death recorded during Holter monitoring. Circulation. 1982 Jul;66(1):218–225. doi: 10.1161/01.cir.66.1.218. [DOI] [PubMed] [Google Scholar]
  23. Pratt C. M., Francis M. J., Luck J. C., Wyndham C. R., Miller R. R., Quinones M. A. Analysis of ambulatory electrocardiograms in 15 patients during spontaneous ventricular fibrillation with special reference to preceding arrhythmic events. J Am Coll Cardiol. 1983 Nov;2(5):789–797. doi: 10.1016/s0735-1097(83)80224-1. [DOI] [PubMed] [Google Scholar]
  24. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  25. Saitoh H., Bailey J. C., Surawicz B. Action potential duration alternans in dog Purkinje and ventricular muscle fibers. Further evidence in support of two different mechanisms. Circulation. 1989 Nov;80(5):1421–1431. doi: 10.1161/01.cir.80.5.1421. [DOI] [PubMed] [Google Scholar]
  26. Stern M. D., Capogrossi M. C., Lakatta E. G. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium. 1988 Dec;9(5-6):247–256. doi: 10.1016/0143-4160(88)90005-x. [DOI] [PubMed] [Google Scholar]
  27. Weiss J. N., Garfinkel A., Karagueuzian H. S., Qu Z., Chen P. S. Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation. 1999 Jun 1;99(21):2819–2826. doi: 10.1161/01.cir.99.21.2819. [DOI] [PubMed] [Google Scholar]
  28. Yao A., Matsui H., Spitzer K. W., Bridge J. H., Barry W. H. Sarcoplasmic reticulum and Na+/Ca2+ exchanger function during early and late relaxation in ventricular myocytes. Am J Physiol. 1997 Dec;273(6 Pt 2):H2765–H2773. doi: 10.1152/ajpheart.1997.273.6.H2765. [DOI] [PubMed] [Google Scholar]
  29. Zaza A., Rocchetti M., Brioschi A., Cantadori A., Ferroni A. Dynamic Ca2+-induced inward rectification of K+ current during the ventricular action potential. Circ Res. 1998 May 18;82(9):947–956. doi: 10.1161/01.res.82.9.947. [DOI] [PubMed] [Google Scholar]
  30. Zeng J., Laurita K. R., Rosenbaum D. S., Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res. 1995 Jul;77(1):140–152. doi: 10.1161/01.res.77.1.140. [DOI] [PubMed] [Google Scholar]
  31. Zygmunt A. C., Gibbons W. R. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res. 1991 Feb;68(2):424–437. doi: 10.1161/01.res.68.2.424. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES