Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):2942–2952. doi: 10.1016/S0006-3495(99)77127-4

Dynamics and thermodynamics of beta-hairpin assembly: insights from various simulation techniques.

A Kolinski 1, B Ilkowski 1, J Skolnick 1
PMCID: PMC1300567  PMID: 10585918

Abstract

Small peptides that might have some features of globular proteins can provide important insights into the protein folding problem. Two simulation methods, Monte Carlo Dynamics (MCD), based on the Metropolis sampling scheme, and Entropy Sampling Monte Carlo (ESMC), were applied in a study of a high-resolution lattice model of the C-terminal fragment of the B1 domain of protein G. The results provide a detailed description of folding dynamics and thermodynamics and agree with recent experimental findings (. Nature. 390:196-197). In particular, it was found that the folding is cooperative and has features of an all-or-none transition. Hairpin assembly is usually initiated by turn formation; however, hydrophobic collapse, followed by the system rearrangement, was also observed. The denatured state exhibits a substantial amount of fluctuating helical conformations, despite the strong beta-type secondary structure propensities encoded in the sequence.

Full Text

The Full Text of this article is available as a PDF (153.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. The nature of protein folding pathways: the classical versus the new view. J Biomol NMR. 1995 Feb;5(2):103–109. doi: 10.1007/BF00208801. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  4. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R. The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 1993 Jun 28;325(1-2):5–16. doi: 10.1016/0014-5793(93)81405-o. [DOI] [PubMed] [Google Scholar]
  6. Friesner R. A., Gunn J. R. Computational studies of protein folding. Annu Rev Biophys Biomol Struct. 1996;25:315–342. doi: 10.1146/annurev.bb.25.060196.001531. [DOI] [PubMed] [Google Scholar]
  7. Godzik A., Skolnick J., Kolinski A. Regularities in interaction patterns of globular proteins. Protein Eng. 1993 Nov;6(8):801–810. doi: 10.1093/protein/6.8.801. [DOI] [PubMed] [Google Scholar]
  8. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  9. Karplus M., Sali A. Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol. 1995 Feb;5(1):58–73. doi: 10.1016/0959-440x(95)80010-x. [DOI] [PubMed] [Google Scholar]
  10. Kolinski A., Galazka W., Skolnick J. On the origin of the cooperativity of protein folding: implications from model simulations. Proteins. 1996 Nov;26(3):271–287. doi: 10.1002/(SICI)1097-0134(199611)26:3<271::AID-PROT4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  11. Kolinski A., Skolnick J. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Proteins. 1998 Sep 1;32(4):475–494. [PubMed] [Google Scholar]
  12. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  13. Ptitsyn O. B. Structures of folding intermediates. Curr Opin Struct Biol. 1995 Feb;5(1):74–78. doi: 10.1016/0959-440x(95)80011-o. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES