Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):2953–2967. doi: 10.1016/S0006-3495(99)77128-6

Involvement of the carboxy-terminus region of the dihydropyridine receptor beta1a subunit in excitation-contraction coupling of skeletal muscle.

M Beurg 1, C A Ahern 1, P Vallejo 1, M W Conklin 1, P A Powers 1, R G Gregg 1, R Coronado 1
PMCID: PMC1300568  PMID: 10585919

Abstract

Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.

Full Text

The Full Text of this article is available as a PDF (551.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. A., Tanabe T., Mikami A., Numa S., Beam K. G. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature. 1990 Aug 9;346(6284):569–572. doi: 10.1038/346569a0. [DOI] [PubMed] [Google Scholar]
  2. Beurg M., Sukhareva M., Ahern C. A., Conklin M. W., Perez-Reyes E., Powers P. A., Gregg R. G., Coronado R. Differential regulation of skeletal muscle L-type Ca2+ current and excitation-contraction coupling by the dihydropyridine receptor beta subunit. Biophys J. 1999 Apr;76(4):1744–1756. doi: 10.1016/S0006-3495(99)77336-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beurg M., Sukhareva M., Strube C., Powers P. A., Gregg R. G., Coronado R. Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta 1 subunit transfected with beta 1 cDNA. Biophys J. 1997 Aug;73(2):807–818. doi: 10.1016/S0006-3495(97)78113-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaudhari N., Beam K. G. mRNA for cardiac calcium channel is expressed during development of skeletal muscle. Dev Biol. 1993 Feb;155(2):507–515. doi: 10.1006/dbio.1993.1048. [DOI] [PubMed] [Google Scholar]
  6. Chien A. J., Zhao X., Shirokov R. E., Puri T. S., Chang C. F., Sun D., Rios E., Hosey M. M. Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem. 1995 Dec 15;270(50):30036–30044. doi: 10.1074/jbc.270.50.30036. [DOI] [PubMed] [Google Scholar]
  7. Conklin M. W., Powers P., Gregg R. G., Coronado R. Ca2+ sparks in embryonic mouse skeletal muscle selectively deficient in dihydropyridine receptor alpha1S or beta1a subunits. Biophys J. 1999 Feb;76(2):657–669. doi: 10.1016/S0006-3495(99)77233-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craven S. E., Bredt D. S. PDZ proteins organize synaptic signaling pathways. Cell. 1998 May 15;93(4):495–498. doi: 10.1016/s0092-8674(00)81179-4. [DOI] [PubMed] [Google Scholar]
  9. De Waard M., Pragnell M., Campbell K. P. Ca2+ channel regulation by a conserved beta subunit domain. Neuron. 1994 Aug;13(2):495–503. doi: 10.1016/0896-6273(94)90363-8. [DOI] [PubMed] [Google Scholar]
  10. Dirksen R. T., Beam K. G. Single calcium channel behavior in native skeletal muscle. J Gen Physiol. 1995 Feb;105(2):227–247. doi: 10.1085/jgp.105.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
  12. Gao T., Chien A. J., Hosey M. M. Complexes of the alpha1C and beta subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J Biol Chem. 1999 Jan 22;274(4):2137–2144. doi: 10.1074/jbc.274.4.2137. [DOI] [PubMed] [Google Scholar]
  13. García J., Beam K. G. Measurement of calcium transients and slow calcium current in myotubes. J Gen Physiol. 1994 Jan;103(1):107–123. doi: 10.1085/jgp.103.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. García J., Tanabe T., Beam K. G. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J Gen Physiol. 1994 Jan;103(1):125–147. doi: 10.1085/jgp.103.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gregg R. G., Messing A., Strube C., Beurg M., Moss R., Behan M., Sukhareva M., Haynes S., Powell J. A., Coronado R. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13961–13966. doi: 10.1073/pnas.93.24.13961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanlon M. R., Berrow N. S., Dolphin A. C., Wallace B. A. Modelling of a voltage-dependent Ca2+ channel beta subunit as a basis for understanding its functional properties. FEBS Lett. 1999 Feb 26;445(2-3):366–370. doi: 10.1016/s0014-5793(99)00156-8. [DOI] [PubMed] [Google Scholar]
  17. Jones L. P., Wei S. K., Yue D. T. Mechanism of auxiliary subunit modulation of neuronal alpha1E calcium channels. J Gen Physiol. 1998 Aug;112(2):125–143. doi: 10.1085/jgp.112.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Josephson I. R., Varadi G. The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J. 1996 Mar;70(3):1285–1293. doi: 10.1016/S0006-3495(96)79685-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kamp T. J., Pérez-García M. T., Marban E. Enhancement of ionic current and charge movement by coexpression of calcium channel beta 1A subunit with alpha 1C subunit in a human embryonic kidney cell line. J Physiol. 1996 Apr 1;492(Pt 1):89–96. doi: 10.1113/jphysiol.1996.sp021291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leong P., MacLennan D. H. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem. 1998 Apr 3;273(14):7791–7794. doi: 10.1074/jbc.273.14.7791. [DOI] [PubMed] [Google Scholar]
  21. Leong P., MacLennan D. H. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem. 1998 Nov 6;273(45):29958–29964. doi: 10.1074/jbc.273.45.29958. [DOI] [PubMed] [Google Scholar]
  22. Leung A. T., Imagawa T., Campbell K. P. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem. 1987 Jun 15;262(17):7943–7946. [PubMed] [Google Scholar]
  23. Marty I., Robert M., Villaz M., De Jongh K., Lai Y., Catterall W. A., Ronjat M. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2270–2274. doi: 10.1073/pnas.91.6.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  25. Nakai J., Sekiguchi N., Rando T. A., Allen P. D., Beam K. G. Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem. 1998 May 29;273(22):13403–13406. doi: 10.1074/jbc.273.22.13403. [DOI] [PubMed] [Google Scholar]
  26. Nakai J., Tanabe T., Konno T., Adams B., Beam K. G. Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation-contraction coupling. J Biol Chem. 1998 Sep 25;273(39):24983–24986. doi: 10.1074/jbc.273.39.24983. [DOI] [PubMed] [Google Scholar]
  27. Neely A., Wei X., Olcese R., Birnbaumer L., Stefani E. Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science. 1993 Oct 22;262(5133):575–578. doi: 10.1126/science.8211185. [DOI] [PubMed] [Google Scholar]
  28. Neuhuber B., Gerster U., Döring F., Glossmann H., Tanabe T., Flucher B. E. Association of calcium channel alpha1S and beta1a subunits is required for the targeting of beta1a but not of alpha1S into skeletal muscle triads. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5015–5020. doi: 10.1073/pnas.95.9.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Olcese R., Neely A., Qin N., Wei X., Birnbaumer L., Stefani E. Coupling between charge movement and pore opening in vertebrate neuronal alpha 1E calcium channels. J Physiol. 1996 Dec 15;497(Pt 3):675–686. doi: 10.1113/jphysiol.1996.sp021799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Olcese R., Qin N., Schneider T., Neely A., Wei X., Stefani E., Birnbaumer L. The amino terminus of a calcium channel beta subunit sets rates of channel inactivation independently of the subunit's effect on activation. Neuron. 1994 Dec;13(6):1433–1438. doi: 10.1016/0896-6273(94)90428-6. [DOI] [PubMed] [Google Scholar]
  31. Powers P. A., Liu S., Hogan K., Gregg R. G. Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem. 1992 Nov 15;267(32):22967–22972. [PubMed] [Google Scholar]
  32. Pragnell M., De Waard M., Mori Y., Tanabe T., Snutch T. P., Campbell K. P. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature. 1994 Mar 3;368(6466):67–70. doi: 10.1038/368067a0. [DOI] [PubMed] [Google Scholar]
  33. Qin N., Olcese R., Zhou J., Cabello O. A., Birnbaumer L., Stefani E. Identification of a second region of the beta-subunit involved in regulation of calcium channel inactivation. Am J Physiol. 1996 Nov;271(5 Pt 1):C1539–C1545. doi: 10.1152/ajpcell.1996.271.5.C1539. [DOI] [PubMed] [Google Scholar]
  34. Ren D., Hall L. M. Functional expression and characterization of skeletal muscle dihydropyridine receptors in Xenopus oocytes. J Biol Chem. 1997 Sep 5;272(36):22393–22396. doi: 10.1074/jbc.272.36.22393. [DOI] [PubMed] [Google Scholar]
  35. Ruth P., Röhrkasten A., Biel M., Bosse E., Regulla S., Meyer H. E., Flockerzi V., Hofmann F. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science. 1989 Sep 8;245(4922):1115–1118. doi: 10.1126/science.2549640. [DOI] [PubMed] [Google Scholar]
  36. Strube C., Beurg M., Powers P. A., Gregg R. G., Coronado R. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J. 1996 Nov;71(5):2531–2543. doi: 10.1016/S0006-3495(96)79446-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strube C., Beurg M., Sukhareva M., Ahern C. A., Powell J. A., Powers P. A., Gregg R. G., Coronado R. Molecular origin of the L-type Ca2+ current of skeletal muscle myotubes selectively deficient in dihydropyridine receptor beta1a subunit. Biophys J. 1998 Jul;75(1):207–217. doi: 10.1016/S0006-3495(98)77507-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takekura H., Bennett L., Tanabe T., Beam K. G., Franzini-Armstrong C. Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA. Biophys J. 1994 Aug;67(2):793–803. doi: 10.1016/S0006-3495(94)80539-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tanabe T., Adams B. A., Numa S., Beam K. G. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature. 1991 Aug 29;352(6338):800–803. doi: 10.1038/352800a0. [DOI] [PubMed] [Google Scholar]
  40. Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
  41. Tareilus E., Roux M., Qin N., Olcese R., Zhou J., Stefani E., Birnbaumer L. A Xenopus oocyte beta subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1703–1708. doi: 10.1073/pnas.94.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Witcher D. R., De Waard M., Liu H., Pragnell M., Campbell K. P. Association of native Ca2+ channel beta subunits with the alpha 1 subunit interaction domain. J Biol Chem. 1995 Jul 28;270(30):18088–18093. doi: 10.1074/jbc.270.30.18088. [DOI] [PubMed] [Google Scholar]
  43. el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES