Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3010–3022. doi: 10.1016/S0006-3495(99)77132-8

Oxidation and reduction of pig skeletal muscle ryanodine receptors.

C S Haarmann 1, R H Fink 1, A F Dulhunty 1
PMCID: PMC1300572  PMID: 10585923

Abstract

Time-dependent effects of cysteine modification were compared in skeletal ryanodine receptors (RyRs) from normal pigs and RyR(MH) (Arg(615) to Cys(615)) from pigs susceptible to malignant hyperthermia, using the oxidizing reagents 4,4'-dithiodipyridine (4, 4'-DTDP) and 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) or the reducing agent dithiothreitol (DTT). Normal and RyR(MH) channels responded similarly to all reagents. DTNB (1 mM), either cytoplasmic (cis) or luminal (trans), or 1 mM 4,4'-DTDP (cis) activated RyRs, introducing an additional long open time constant. 4,4'-DTDP (cis), but not DTNB, inhibited channels after >5 min. Activation and inhibition were relieved by DTT (1-10 mM). DTT (10 mM, cytoplasmic or luminal), without oxidants, activated RyRs, and activation reversed with 1 mM DTNB. Control RyR activity was maintained with 1 mM DTNB and 10 mM DTT present on the same or opposite sides of the bilayer. We suggest that 1) 4,4'-DTDP and DTNB covalently modify RyRs by oxidizing activating or inhibiting thiol groups; 2) a modified thiol depresses mammalian skeletal RyR activity under control conditions; 3) both the activating thiols and the modified thiols, accessible from either cytoplasm or lumen, reside in the transmembrane region; 4) some cardiac sulfhydryls are unavailable in skeletal RyRs; and 5) Cys(615) in RyR(MH) is functionally unimportant in redox cycling.

Full Text

The Full Text of this article is available as a PDF (192.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Zable A. C., Favero T. G., Salama G. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Dec 15;270(50):29644–29647. doi: 10.1074/jbc.270.50.29644. [DOI] [PubMed] [Google Scholar]
  2. Ahern G. P., Junankar P. R., Dulhunty A. F. Ryanodine receptors from rabbit skeletal muscle are reversibly activated by rapamycin. Neurosci Lett. 1997 Apr 4;225(2):81–84. doi: 10.1016/s0304-3940(97)00193-6. [DOI] [PubMed] [Google Scholar]
  3. Ahern G. P., Junankar P. R., Dulhunty A. F. Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett. 1994 Oct 3;352(3):369–374. doi: 10.1016/0014-5793(94)01001-3. [DOI] [PubMed] [Google Scholar]
  4. Ahern G. P., Junankar P. R., Dulhunty A. F. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys J. 1997 Jan;72(1):146–162. doi: 10.1016/S0006-3495(97)78654-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boraso A., Williams A. J. Modification of the gating of the cardiac sarcoplasmic reticulum Ca(2+)-release channel by H2O2 and dithiothreitol. Am J Physiol. 1994 Sep;267(3 Pt 2):H1010–H1016. doi: 10.1152/ajpheart.1994.267.3.H1010. [DOI] [PubMed] [Google Scholar]
  6. Carrier L., Villaz M., Dupont Y. Abnormal rapid Ca2+ release from sarcoplasmic reticulum of malignant hyperthermia susceptible pigs. Biochim Biophys Acta. 1991 May 7;1064(2):175–183. doi: 10.1016/0005-2736(91)90299-n. [DOI] [PubMed] [Google Scholar]
  7. Cifuentes M. E., Ronjat M., Ikemoto N. Polylysine induces a rapid Ca2+ release from sarcoplasmic reticulum vesicles by mediation of its binding to the foot protein. Arch Biochem Biophys. 1989 Sep;273(2):554–561. doi: 10.1016/0003-9861(89)90515-8. [DOI] [PubMed] [Google Scholar]
  8. Curello S., Ceconi C., Bigoli C., Ferrari R., Albertini A., Guarnieri C. Changes in the cardiac glutathione status after ischemia and reperfusion. Experientia. 1985 Jan 15;41(1):42–43. doi: 10.1007/BF02005863. [DOI] [PubMed] [Google Scholar]
  9. Eager K. R., Dulhunty A. F. Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol. 1998 May 1;163(1):9–18. doi: 10.1007/s002329900365. [DOI] [PubMed] [Google Scholar]
  10. Eager K. R., Dulhunty A. F. Cardiac ryanodine receptor activity is altered by oxidizing reagents in either the luminal or cytoplasmic solution. J Membr Biol. 1999 Feb 1;167(3):205–214. doi: 10.1007/s002329900484. [DOI] [PubMed] [Google Scholar]
  11. Favero T. G., Zable A. C., Abramson J. J. Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Oct 27;270(43):25557–25563. doi: 10.1074/jbc.270.43.25557. [DOI] [PubMed] [Google Scholar]
  12. Fill M., Stefani E., Nelson T. E. Abnormal human sarcoplasmic reticulum Ca2+ release channels in malignant hyperthermic skeletal muscle. Biophys J. 1991 May;59(5):1085–1090. doi: 10.1016/S0006-3495(91)82323-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V. K., Weiler J. E., O'Brien P. J., MacLennan D. H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991 Jul 26;253(5018):448–451. doi: 10.1126/science.1862346. [DOI] [PubMed] [Google Scholar]
  14. Glazer A. N. Specific chemical modification of proteins. Annu Rev Biochem. 1970;39:101–130. doi: 10.1146/annurev.bi.39.070170.000533. [DOI] [PubMed] [Google Scholar]
  15. Holmberg S. R., Cumming D. V., Kusama Y., Hearse D. J., Poole-Wilson P. A., Shattock M. J., Williams A. J. Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience. 1991 Mar;2(1):19–25. [PubMed] [Google Scholar]
  16. Holmberg S. R., Williams A. J. The calcium-release channel from cardiac sarcoplasmic reticulum: function in the failing and acutely ischaemic heart. Basic Res Cardiol. 1992;87 (Suppl 1):255–268. doi: 10.1007/978-3-642-72474-9_21. [DOI] [PubMed] [Google Scholar]
  17. Houk J., Singh R., Whitesides G. M. Measurement of thiol-disulfide interchange reactions and thiol pKa values. Methods Enzymol. 1987;143:129–140. doi: 10.1016/0076-6879(87)43023-1. [DOI] [PubMed] [Google Scholar]
  18. Kasai M., Kawasaki T., Yamamoto K. Permeation of neutral molecules through calcium channel in sarcoplasmic reticulum vesicles. J Biochem. 1992 Aug;112(2):197–203. doi: 10.1093/oxfordjournals.jbchem.a123877. [DOI] [PubMed] [Google Scholar]
  19. Koshita M., Miwa K., Oba T. Sulfhydryl oxidation induces calcium release from fragmented sarcoplasmic reticulum even in the presence of glutathione. Experientia. 1993 Apr 15;49(4):282–284. doi: 10.1007/BF01923402. [DOI] [PubMed] [Google Scholar]
  20. Laver D. R., Lamb G. D. Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys J. 1998 May;74(5):2352–2364. doi: 10.1016/S0006-3495(98)77944-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laver D. R., Owen V. J., Junankar P. R., Taske N. L., Dulhunty A. F., Lamb G. D. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J. 1997 Oct;73(4):1913–1924. doi: 10.1016/S0006-3495(97)78222-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ma J., Bhat M. B., Zhao J. Rectification of skeletal muscle ryanodine receptor mediated by FK506 binding protein. Biophys J. 1995 Dec;69(6):2398–2404. doi: 10.1016/S0006-3495(95)80109-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marengo J. J., Hidalgo C., Bull R. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J. 1998 Mar;74(3):1263–1277. doi: 10.1016/S0006-3495(98)77840-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem. 1984 Feb 25;259(4):2365–2374. [PubMed] [Google Scholar]
  25. Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
  26. Mickelson J. R., Louis C. F. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996 Apr;76(2):537–592. doi: 10.1152/physrev.1996.76.2.537. [DOI] [PubMed] [Google Scholar]
  27. Nagura S., Kawasaki T., Taguchi T., Kasai M. Calcium release from isolated sarcoplasmic reticulum due to 4,4'-dithiodipyridine. J Biochem. 1988 Sep;104(3):461–465. doi: 10.1093/oxfordjournals.jbchem.a122490. [DOI] [PubMed] [Google Scholar]
  28. Oba T., Nihonyanagi K., Tangkawattana P., Yamaguchi M. A novel phasic contraction induced by dithiothreitol in frog skeletal muscle. Gen Pharmacol. 1996 Dec;27(8):1361–1366. doi: 10.1016/s0306-3623(96)00077-8. [DOI] [PubMed] [Google Scholar]
  29. Ohta T., Endo M., Nakano T., Morohoshi Y., Wanikawa K., Ohga A. Ca-induced Ca release in malignant hyperthermia-susceptible pig skeletal muscle. Am J Physiol. 1989 Feb;256(2 Pt 1):C358–C367. doi: 10.1152/ajpcell.1989.256.2.C358. [DOI] [PubMed] [Google Scholar]
  30. Otsu K., Phillips M. S., Khanna V. K., de Leon S., MacLennan D. H. Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics. 1992 Jul;13(3):835–837. doi: 10.1016/0888-7543(92)90163-m. [DOI] [PubMed] [Google Scholar]
  31. Otsu K., Willard H. F., Khanna V. K., Zorzato F., Green N. M., MacLennan D. H. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem. 1990 Aug 15;265(23):13472–13483. [PubMed] [Google Scholar]
  32. Owen V. J., Taske N. L., Lamb G. D. Reduced Mg2+ inhibition of Ca2+ release in muscle fibers of pigs susceptible to malignant hyperthermia. Am J Physiol. 1997 Jan;272(1 Pt 1):C203–C211. doi: 10.1152/ajpcell.1997.272.1.C203. [DOI] [PubMed] [Google Scholar]
  33. Quinn K. E., Ehrlich B. E. Methanethiosulfonate derivatives inhibit current through the ryanodine receptor/channel. J Gen Physiol. 1997 Feb;109(2):255–264. doi: 10.1085/jgp.109.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shaked Z., Szajewski R. P., Whitesides G. M. Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values. Biochemistry. 1980 Sep 2;19(18):4156–4166. doi: 10.1021/bi00559a004. [DOI] [PubMed] [Google Scholar]
  35. Shomer N. H., Louis C. F., Fill M., Litterer L. A., Mickelson J. R. Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. Am J Physiol. 1993 Jan;264(1 Pt 1):C125–C135. doi: 10.1152/ajpcell.1993.264.1.C125. [DOI] [PubMed] [Google Scholar]
  36. Sies H., Gerstenecker C., Menzel H., Flohé L. Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett. 1972 Oct 15;27(1):171–175. doi: 10.1016/0014-5793(72)80434-4. [DOI] [PubMed] [Google Scholar]
  37. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stoyanovsky D., Murphy T., Anno P. R., Kim Y. M., Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium. 1997 Jan;21(1):19–29. doi: 10.1016/s0143-4160(97)90093-2. [DOI] [PubMed] [Google Scholar]
  39. Xu L., Eu J. P., Meissner G., Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998 Jan 9;279(5348):234–237. doi: 10.1126/science.279.5348.234. [DOI] [PubMed] [Google Scholar]
  40. Zable A. C., Favero T. G., Abramson J. J. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J Biol Chem. 1997 Mar 14;272(11):7069–7077. doi: 10.1074/jbc.272.11.7069. [DOI] [PubMed] [Google Scholar]
  41. Zahradníková A., Meszáros L. G. Voltage change-induced gating transitions of the rabbit skeletal muscle Ca2+ release channel. J Physiol. 1998 May 15;509(Pt 1):29–38. doi: 10.1111/j.1469-7793.1998.029bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. el-Hayek R., Yano M., Antoniu B., Mickelson J. R., Louis C. F., Ikemoto N. Altered E-C coupling in triads isolated from malignant hyperthermia-susceptible porcine muscle. Am J Physiol. 1995 Jun;268(6 Pt 1):C1381–C1386. doi: 10.1152/ajpcell.1995.268.6.C1381. [DOI] [PubMed] [Google Scholar]
  43. van Iwaarden P. R., Driessen A. J., Konings W. N. What we can learn from the effects of thiol reagents on transport proteins. Biochim Biophys Acta. 1992 Aug 14;1113(2):161–170. doi: 10.1016/0304-4157(92)90037-b. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES