Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3023–3033. doi: 10.1016/S0006-3495(99)77133-X

Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.

P G Merzlyak 1, L N Yuldasheva 1, C G Rodrigues 1, C M Carneiro 1, O V Krasilnikov 1, S M Bezrukov 1
PMCID: PMC1300573  PMID: 10585924

Abstract

Asymmetrical (one-sided) application of penetrating water-soluble polymers, polyethylene glycols (PEGs), to a well-defined channel formed by Staphylococcus aureus alpha-toxin is shown to probe channel pore geometry in more detail than their symmetrical (two-sided) application. Polymers added to the cis side of the planar lipid membrane (the side of protein addition) affect channel conductance differently than polymers added to the trans side. Because a satisfactory theory quantitatively describing PEG partitioning into a channel pore does not exist, we apply the simple empirical rules proposed previously (, J. Membr. Biol. 161:83-92) to gauge the size of pore openings as well as the size and position of constrictions along the pore axis. We estimate the radii of the two openings of the channel to be practically identical and equal to 1. 2-1.3 nm. Two apparent constrictions with radii of approximately 0. 9 nm and approximately 0.6-0.7 nm are inferred to be present in the channel lumen, the larger one being closer to the cis side. These structural findings agree well with crystallographic data on the channel structure (, Science. 274:1859-1866) and verify the practicality of polymer probing. The general features of PEG partitioning are examined using available theoretical considerations, assuming there is no attraction between PEG and the channel lumen. It is shown that the sharp dependence of the partition coefficient on polymer molecular weight found under both symmetrical and asymmetrical polymer application can be rationalized within a "hard sphere nonideal solution model." This finding is rather surprising because PEG forms highly flexible coils in water with a Kuhn length of only several Angstroms.

Full Text

The Full Text of this article is available as a PDF (123.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
  2. Bezrukov S. M., Kasianowicz J. J. The charge state of an ion channel controls neutral polymer entry into its pore. Eur Biophys J. 1997;26(6):471–476. doi: 10.1007/s002490050101. [DOI] [PubMed] [Google Scholar]
  3. Bezrukov S. M., Vodyanoy I., Parsegian V. A. Counting polymers moving through a single ion channel. Nature. 1994 Jul 28;370(6487):279–281. doi: 10.1038/370279a0. [DOI] [PubMed] [Google Scholar]
  4. Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhakdi S., Muhly M., Füssle R. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin. Infect Immun. 1984 Nov;46(2):318–323. doi: 10.1128/iai.46.2.318-323.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bullock J. O., Kolen E. R. Ion selectivity of colicin E1: III. Anion permeability. J Membr Biol. 1995 Mar;144(2):131–145. doi: 10.1007/BF00232799. [DOI] [PubMed] [Google Scholar]
  7. Czajkowsky D. M., Sheng S., Shao Z. Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. J Mol Biol. 1998 Feb 20;276(2):325–330. doi: 10.1006/jmbi.1997.1535. [DOI] [PubMed] [Google Scholar]
  8. Desai S. A., Rosenberg R. L. Pore size of the malaria parasite's nutrient channel. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2045–2049. doi: 10.1073/pnas.94.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gouaux J. E., Braha O., Hobaugh M. R., Song L., Cheley S., Shustak C., Bayley H. Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12828–12831. doi: 10.1073/pnas.91.26.12828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray G. S., Kehoe M. Primary sequence of the alpha-toxin gene from Staphylococcus aureus wood 46. Infect Immun. 1984 Nov;46(2):615–618. doi: 10.1128/iai.46.2.615-618.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ingham K. C. Polyethylene glycol in aqueous solution: solvent perturbation and gel filtration studies. Arch Biochem Biophys. 1977 Nov;184(1):59–68. doi: 10.1016/0003-9861(77)90326-5. [DOI] [PubMed] [Google Scholar]
  12. Jonas D., Walev I., Berger T., Liebetrau M., Palmer M., Bhakdi S. Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect Immun. 1994 Apr;62(4):1304–1312. doi: 10.1128/iai.62.4.1304-1312.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaulin Y. A., Schagina L. V., Bezrukov S. M., Malev V. V., Feigin A. M., Takemoto J. Y., Teeter J. H., Brand J. G. Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys J. 1998 Jun;74(6):2918–2925. doi: 10.1016/S0006-3495(98)77999-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Korchev Y. E., Bashford C. L., Alder G. M., Kasianowicz J. J., Pasternak C. A. Low conductance states of a single ion channel are not 'closed'. J Membr Biol. 1995 Oct;147(3):233–239. doi: 10.1007/BF00234521. [DOI] [PubMed] [Google Scholar]
  15. Krasilnikov O. V., Da Cruz J. B., Yuldasheva L. N., Varanda W. A., Nogueira R. A. A novel approach to study the geometry of the water lumen of ion channels: colicin Ia channels in planar lipid bilayers. J Membr Biol. 1998 Jan 1;161(1):83–92. doi: 10.1007/s002329900316. [DOI] [PubMed] [Google Scholar]
  16. Krasilnikov O. V., Merzlyak P. G., Yuldasheva L. N., Azimova R. K., Nogueira R. A. Pore-forming properties of proteolytically nicked staphylococcal alpha-toxin: the ion channel in planar lipid bilayer membranes. Med Microbiol Immunol. 1997 Jun;186(1):53–61. doi: 10.1007/s004300050046. [DOI] [PubMed] [Google Scholar]
  17. Krasilnikov O. V., Sabirov R. Z. Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin. Gen Physiol Biophys. 1989 Jun;8(3):213–222. [PubMed] [Google Scholar]
  18. Krasilnikov O. V., Sabirov R. Z., Ternovsky V. I., Merzliak P. G., Muratkhodjaev J. N. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol. 1992 Sep;5(1-3):93–100. doi: 10.1111/j.1574-6968.1992.tb05891.x. [DOI] [PubMed] [Google Scholar]
  19. Krasilnikov O. V., Sabirov R. Z., Ternovsky V. I., Merzliak P. G., Tashmukhamedov B. A. The structure of Staphylococcus aureus alpha-toxin-induced ionic channel. Gen Physiol Biophys. 1988 Oct;7(5):467–473. [PubMed] [Google Scholar]
  20. Lee J. C., Lee L. L. Preferential solvent interactions between proteins and polyethylene glycols. J Biol Chem. 1981 Jan 25;256(2):625–631. [PubMed] [Google Scholar]
  21. Lee L. L., Lee J. C. Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry. 1987 Dec 1;26(24):7813–7819. doi: 10.1021/bi00398a042. [DOI] [PubMed] [Google Scholar]
  22. Menestrina G. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J Membr Biol. 1986;90(2):177–190. doi: 10.1007/BF01869935. [DOI] [PubMed] [Google Scholar]
  23. Parsegian V. A., Bezrukov S. M., Vodyanoy I. Watching small molecules move: interrogating ionic channels using neutral solutes. Biosci Rep. 1995 Dec;15(6):503–514. doi: 10.1007/BF01204353. [DOI] [PubMed] [Google Scholar]
  24. Parsegian V. A., Rand R. P., Fuller N. L., Rau D. C. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 1986;127:400–416. doi: 10.1016/0076-6879(86)27032-9. [DOI] [PubMed] [Google Scholar]
  25. Pohl P., Saparov S. M., Antonenko Y. N. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys J. 1997 Apr;72(4):1711–1718. doi: 10.1016/S0006-3495(97)78817-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohl P., Saparov S. M., Antonenko Y. N. The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J. 1998 Sep;75(3):1403–1409. doi: 10.1016/S0006-3495(98)74058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SCHULTZ S. G., SOLOMON A. K. Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol. 1961 Jul;44:1189–1199. doi: 10.1085/jgp.44.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sabirov R. Z., Krasilnikov O. V., Ternovsky V. I., Merzliak P. G. Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination. Gen Physiol Biophys. 1993 Apr;12(2):95–111. [PubMed] [Google Scholar]
  29. Sheth S. R., Leckband D. Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol) chains. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8399–8404. doi: 10.1073/pnas.94.16.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996 Dec 13;274(5294):1859–1866. doi: 10.1126/science.274.5294.1859. [DOI] [PubMed] [Google Scholar]
  31. Ternovsky V. I., Berestovsky G. N. Effective diameter and structural organization of reconstituted calcium channels from the Characeae algae Nitellopsis. Membr Cell Biol. 1998;12(1):79–88. [PubMed] [Google Scholar]
  32. Tomita T., Watanabe M., Yasuda T. Influence of membrane fluidity on the assembly of Staphylococcus aureus alpha-toxin, a channel-forming protein, in liposome membrane. J Biol Chem. 1992 Jul 5;267(19):13391–13397. [PubMed] [Google Scholar]
  33. Valeva A., Weisser A., Walker B., Kehoe M., Bayley H., Bhakdi S., Palmer M. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J. 1996 Apr 15;15(8):1857–1864. [PMC free article] [PubMed] [Google Scholar]
  34. Villarroel A., Burnashev N., Sakmann B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys J. 1995 Mar;68(3):866–875. doi: 10.1016/S0006-3495(95)80263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vodyanoy I., Bezrukov S. M. Sizing of an ion pore by access resistance measurements. Biophys J. 1992 Apr;62(1):10–11. doi: 10.1016/S0006-3495(92)81762-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vécsey-Semjén B., Lesieur C., Möllby R., van der Goot F. G. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem. 1997 Feb 28;272(9):5709–5717. doi: 10.1074/jbc.272.9.5709. [DOI] [PubMed] [Google Scholar]
  37. Walev I., Martin E., Jonas D., Mohamadzadeh M., Müller-Klieser W., Kunz L., Bhakdi S. Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun. 1993 Dec;61(12):4972–4979. doi: 10.1128/iai.61.12.4972-4979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zimmerberg J., Parsegian V. A. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature. 1986 Sep 4;323(6083):36–39. doi: 10.1038/323036a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES