Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3043–3051. doi: 10.1016/S0006-3495(99)77135-3

Inhibition of alphabeta epithelial sodium channels by external protons indicates that the second hydrophobic domain contains structural elements for closing the pore.

P Zhang 1, G K Fyfe 1, I I Grichtchenko 1, C M Canessa 1
PMCID: PMC1300575  PMID: 10585926

Abstract

We have examined the effect of extracellular protons on the activity of epithelial sodium channels (ENaCs). We found that alphabeta channels, but not alphabetagamma or alphagamma channels, are inhibited by low extracellular pH. External protons induced short and long closed states that markedly decreased the open probability of alphabeta channels. External protons did not change the single-channel conductance or amiloride binding. Analysis of the proton-induced changes on the kinetics of single channels indicates that at least two protons sequentially bind to the extracellular domain at sites that are not in the ion pathway. Conformational changes induced by protonation of those sites are transmitted to the second hydrophobic domain (M2) of the subunits to induce closure of the pore. The results suggest that elements located in the carboxy-terminal half of M2 participate in the gating mechanism of ENaCs.

Full Text

The Full Text of this article is available as a PDF (162.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abriel H., Horisberger J. D. Feedback inhibition of rat amiloride-sensitive epithelial sodium channels expressed in Xenopus laevis oocytes. J Physiol. 1999 Apr 1;516(Pt 1):31–43. doi: 10.1111/j.1469-7793.1999.031aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams C. M., Anderson M. G., Motto D. G., Price M. P., Johnson W. A., Welsh M. J. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol. 1998 Jan 12;140(1):143–152. doi: 10.1083/jcb.140.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Canessa C. M., Merillat A. M., Rossier B. C. Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol. 1994 Dec;267(6 Pt 1):C1682–C1690. doi: 10.1152/ajpcell.1994.267.6.C1682. [DOI] [PubMed] [Google Scholar]
  4. Chalfant M. L., Denton J. S., Berdiev B. K., Ismailov I. I., Benos D. J., Stanton B. A. Intracellular H+ regulates the alpha-subunit of ENaC, the epithelial Na+ channel. Am J Physiol. 1999 Feb;276(2 Pt 1):C477–C486. doi: 10.1152/ajpcell.1999.276.2.C477. [DOI] [PubMed] [Google Scholar]
  5. Chraïbi A., Vallet V., Firsov D., Hess S. K., Horisberger J. D. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol. 1998 Jan;111(1):127–138. doi: 10.1085/jgp.111.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuello L. G., Romero J. G., Cortes D. M., Perozo E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry. 1998 Mar 10;37(10):3229–3236. doi: 10.1021/bi972997x. [DOI] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Driscoll M., Chalfie M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature. 1991 Feb 14;349(6310):588–593. doi: 10.1038/349588a0. [DOI] [PubMed] [Google Scholar]
  9. Fyfe G. K., Canessa C. M. Subunit composition determines the single channel kinetics of the epithelial sodium channel. J Gen Physiol. 1998 Oct;112(4):423–432. doi: 10.1085/jgp.112.4.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García-Añoveros J., Ma C., Chalfie M. Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr Biol. 1995 Apr 1;5(4):441–448. doi: 10.1016/s0960-9822(95)00085-6. [DOI] [PubMed] [Google Scholar]
  11. Huang M., Chalfie M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature. 1994 Feb 3;367(6462):467–470. doi: 10.1038/367467a0. [DOI] [PubMed] [Google Scholar]
  12. Kellenberger S., Gautschi I., Schild L. A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4170–4175. doi: 10.1073/pnas.96.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lingueglia E., Champigny G., Lazdunski M., Barbry P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature. 1995 Dec 14;378(6558):730–733. doi: 10.1038/378730a0. [DOI] [PubMed] [Google Scholar]
  14. Palmer L. G., Frindt G. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol. 1987 Aug;253(2 Pt 2):F333–F339. doi: 10.1152/ajprenal.1987.253.2.F333. [DOI] [PubMed] [Google Scholar]
  15. Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
  16. Renard S., Lingueglia E., Voilley N., Lazdunski M., Barbry P. Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem. 1994 Apr 29;269(17):12981–12986. [PubMed] [Google Scholar]
  17. Siebens A. W., Boron W. F. Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules. J Gen Physiol. 1987 Dec;90(6):799–831. doi: 10.1085/jgp.90.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vallet V., Chraibi A., Gaeggeler H. P., Horisberger J. D., Rossier B. C. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997 Oct 9;389(6651):607–610. doi: 10.1038/39329. [DOI] [PubMed] [Google Scholar]
  19. Waldmann R., Champigny G., Lazdunski M. Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function. J Biol Chem. 1995 May 19;270(20):11735–11737. doi: 10.1074/jbc.270.20.11735. [DOI] [PubMed] [Google Scholar]
  20. Waldmann R., Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998 Jun;8(3):418–424. doi: 10.1016/s0959-4388(98)80070-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES