Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3096–3107. doi: 10.1016/S0006-3495(99)77140-7

The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.

K H Parker 1, C P Winlove 1
PMCID: PMC1300580  PMID: 10585931

Abstract

The deformation of an initially spherical vesicle of radius a with a permeable membrane under extensive forces applied at its poles is calculated as a function of the in-plane shear modulus, H, and the out-of-plane bending modulus, B, using an axisymmetric theory that is valid for large deformations. Suitably nondimensionalized, the results depend upon a single nondimensional parameter, C identical with a(2)H/B. For small deformations, the calculated force-polar strain curves are linear and, under these conditions, the slope of the curve determines only C, not the values of H and B separately. Independent determination of H and B from experimental measurements require deformations that are large enough to produce nonlinear behavior. Simple approximations for large and small C are given, which are applied to experimental measurements on red blood cell ghosts that have been made permeable by treatment with saponin.

Full Text

The Full Text of this article is available as a PDF (150.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boey S. K., Boal D. H., Discher D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J. 1998 Sep;75(3):1573–1583. doi: 10.1016/S0006-3495(98)74075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dai J., Sheetz M. P. Cell membrane mechanics. Methods Cell Biol. 1998;55:157–171. [PubMed] [Google Scholar]
  3. Hansen J. C., Skalak R., Chien S., Hoger A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J. 1997 May;72(5):2369–2381. doi: 10.1016/S0006-3495(97)78882-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Iglic A. A possible mechanism determining the stability of spiculated red blood cells. J Biomech. 1997 Jan;30(1):35–40. doi: 10.1016/s0021-9290(96)00100-5. [DOI] [PubMed] [Google Scholar]
  5. Pamplona D. C., Calladine C. R. Aspects of the mechanics of lobed liposomes. J Biomech Eng. 1996 Nov;118(4):482–488. doi: 10.1115/1.2796034. [DOI] [PubMed] [Google Scholar]
  6. Pamplona D. C., Calladine C. R. The mechanics of axially symmetric liposomes. J Biomech Eng. 1993 May;115(2):149–159. doi: 10.1115/1.2894115. [DOI] [PubMed] [Google Scholar]
  7. Pasternak C., Wong S., Elson E. L. Mechanical function of dystrophin in muscle cells. J Cell Biol. 1995 Feb;128(3):355–361. doi: 10.1083/jcb.128.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sleep J., Wilson D., Simmons R., Gratzer W. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J. 1999 Dec;77(6):3085–3095. doi: 10.1016/S0006-3495(99)77139-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Waugh R. E., Song J., Svetina S., Zeks B. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J. 1992 Apr;61(4):974–982. doi: 10.1016/S0006-3495(92)81904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zeman K., Engelhard H., Sackmann E. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization. Eur Biophys J. 1990;18(4):203–219. doi: 10.1007/BF00183373. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES