Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3108–3119. doi: 10.1016/S0006-3495(99)77141-9

Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers.

K H Cheng 1, J Virtanen 1, P Somerharju 1
PMCID: PMC1300581  PMID: 10585932

Abstract

Our previous fluorescence study has provided indirect evidence that lipid headgroup components tend to adopt regular, superlattice-like lateral distribution in fluid phosphatidylethanolamine/phosphatidylcholine (PE/PC) bilayers (, Biophys. J. 73:1967-1976). Here we have further studied this intriguing phenomenon by making use of the fluorescence properties of a sterol probe, dehydroergosterol (DHE). Fluorescence emission spectra, fluorescence anisotropy (r), and time-resolved fluorescence intensity decays of DHE in 1-palmitoyl-2-oleoyl-PC (POPC)/1-palmitoyl-2-oleoyl-PE (POPE) mixtures were measured as a function of POPE mole fraction (X(PE)) at 23 degrees C. Deviations, including dips or kinks, in the ratio of fluorescence peak intensity at 375 nm/fluorescence peak intensity at 390 nm (I(375)/I(390)), fluorescence decay lifetime (tau), or rotational correlation time (rho) of DHE versus PE composition plots were found at X(PE) approximately 0.10, 0.25, 0.33, 0.65, 0.75, and 0.88. The critical values at X(PE) approximately 0.33 and 0.65 were consistently observed for all measured parameters. In addition, the locations, but not the depth, of the dips for X(PE) < 0.50 did not vary significantly over 10 days of annealing at 23 degrees C. The observed critical values of X(PE) coincide (within +/-0.03) with some of the critical mole fractions predicted by a headgroup superlattice model proposing that the PE and PC headgroups tend to be regularly distributed in the plane of the bilayer. These results agree favorably with those obtained in our previous fluorescence study using dipyrenylPC and Laurdan probes and thus support the proposition that 1) regular arrangement within a domain exists in fluid PE/PC bilayers, and 2) superlattice formation may play a significant role in controlling the lipid composition of cellular membranes (, Proc. Natl. Acad. Sci. USA. 95:4964-4969). The present data provide new information on the physical properties of such superlattice domains, i.e., the dielectric environment and rotational motion of membrane sterols appear to change abruptly as the lipid headgroups exhibit regular superlattice-like distributions in fluid bilayers.

Full Text

The Full Text of this article is available as a PDF (167.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar L. K., Chong P. L., Barenholz Y., Thompson T. E. Spontaneous transfer between phospholipid bilayers of dehydroergosterol, a fluorescent cholesterol analog. Biochim Biophys Acta. 1989 Jul 24;983(1):109–112. doi: 10.1016/0005-2736(89)90386-6. [DOI] [PubMed] [Google Scholar]
  2. Cheng K. H., Ruonala M., Virtanen J., Somerharju P. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers. Biophys J. 1997 Oct;73(4):1967–1976. doi: 10.1016/S0006-3495(97)78227-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chong P. L. Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10069–10073. doi: 10.1073/pnas.91.21.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chong P. L., Thompson T. E. Depolarization of dehydroergosterol in phospholipid bilayers. Biochim Biophys Acta. 1986 Dec 1;863(1):53–62. doi: 10.1016/0005-2736(86)90386-x. [DOI] [PubMed] [Google Scholar]
  5. Kao Y. L., Chong P. L., Huang C. H. Time-resolved fluorometric and differential scanning calorimetric investigation of dehydroergosterol in 1-stearoyl-2-caprylphosphatidylcholine bilayers. Biochemistry. 1990 Feb 6;29(5):1315–1322. doi: 10.1021/bi00457a030. [DOI] [PubMed] [Google Scholar]
  6. Liu F., Sugar I. P., Chong P. L. Cholesterol and ergosterol superlattices in three-component liquid crystalline lipid bilayers as revealed by dehydroergosterol fluorescence. Biophys J. 1997 May;72(5):2243–2254. doi: 10.1016/S0006-3495(97)78868-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Loura L. M., Prieto M. Dehydroergosterol structural organization in aqueous medium and in a model system of membranes. Biophys J. 1997 May;72(5):2226–2236. doi: 10.1016/S0006-3495(97)78866-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Parasassi T., Giusti A. M., Raimondi M., Gratton E. Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations. Biophys J. 1995 May;68(5):1895–1902. doi: 10.1016/S0006-3495(95)80367-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schroeder F., Barenholz Y., Gratton E., Thompson T. E. A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry. 1987 May 5;26(9):2441–2448. doi: 10.1021/bi00383a007. [DOI] [PubMed] [Google Scholar]
  10. Schroeder F. Fluorescent sterols: probe molecules of membrane structure and function. Prog Lipid Res. 1984;23(2):97–113. doi: 10.1016/0163-7827(84)90009-2. [DOI] [PubMed] [Google Scholar]
  11. Somerharju P., Virtanen J. A., Cheng K. H. Lateral organisation of membrane lipids. The superlattice view. Biochim Biophys Acta. 1999 Aug 25;1440(1):32–48. doi: 10.1016/s1388-1981(99)00106-7. [DOI] [PubMed] [Google Scholar]
  12. Virtanen J. A., Cheng K. H., Somerharju P. Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4964–4969. doi: 10.1073/pnas.95.9.4964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Virtanen J. A., Ruonala M., Vauhkonen M., Somerharju P. Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry. 1995 Sep 12;34(36):11568–11581. doi: 10.1021/bi00036a033. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES