Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3134–3143. doi: 10.1016/S0006-3495(99)77143-2

Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures.

J M Crane 1, G Putz 1, S B Hall 1
PMCID: PMC1300583  PMID: 10585934

Abstract

Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface.

Full Text

The Full Text of this article is available as a PDF (333.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Davis P. J., Fleming B. D., Coolbear K. P., Keough K. M. Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines. Biochemistry. 1981 Jun 9;20(12):3633–3636. doi: 10.1021/bi00515a051. [DOI] [PubMed] [Google Scholar]
  3. Discher B. M., Maloney K. M., Grainger D. W., Sousa C. A., Hall S. B. Neutral lipids induce critical behavior in interfacial monolayers of pulmonary surfactant. Biochemistry. 1999 Jan 5;38(1):374–383. doi: 10.1021/bi981386h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Discher B. M., Maloney K. M., Schief W. R., Jr, Grainger D. W., Vogel V., Hall S. B. Lateral phase separation in interfacial films of pulmonary surfactant. Biophys J. 1996 Nov;71(5):2583–2590. doi: 10.1016/S0006-3495(96)79450-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goerke J., Gonzales J. Temperature dependence of dipalmitoyl phosphatidylcholine monolayer stability. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1108–1114. doi: 10.1152/jappl.1981.51.5.1108. [DOI] [PubMed] [Google Scholar]
  6. Nagle J. F. Theory of lipid monolayer and bilayer chain-melting phase transitions. Faraday Discuss Chem Soc. 1986;(81):151–162. doi: 10.1039/dc9868100151. [DOI] [PubMed] [Google Scholar]
  7. Phillips M. C., Chapman D. Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):301–313. doi: 10.1016/0005-2736(68)90115-6. [DOI] [PubMed] [Google Scholar]
  8. Putz G., Goerke J., Schürch S., Clements J. A. Evaluation of pressure-driven captive bubble surfactometer. J Appl Physiol (1985) 1994 Apr;76(4):1417–1424. doi: 10.1152/jappl.1994.76.4.1417. [DOI] [PubMed] [Google Scholar]
  9. Putz G., Walch M., Van Eijk M., Haagsman H. P. A spreading technique for forming film in a captive bubble. Biophys J. 1998 Nov;75(5):2229–2239. doi: 10.1016/S0006-3495(98)77667-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schoel W. M., Schürch S., Goerke J. The captive bubble method for the evaluation of pulmonary surfactant: surface tension, area, and volume calculations. Biochim Biophys Acta. 1994 Aug 18;1200(3):281–290. doi: 10.1016/0304-4165(94)90169-4. [DOI] [PubMed] [Google Scholar]
  11. Schürch S., Bachofen H., Goerke J., Green F. Surface properties of rat pulmonary surfactant studied with the captive bubble method: adsorption, hysteresis, stability. Biochim Biophys Acta. 1992 Jan 10;1103(1):127–136. doi: 10.1016/0005-2736(92)90066-u. [DOI] [PubMed] [Google Scholar]
  12. Schürch S., Bachofen H., Goerke J., Possmayer F. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol (1985) 1989 Dec;67(6):2389–2396. doi: 10.1152/jappl.1989.67.6.2389. [DOI] [PubMed] [Google Scholar]
  13. Schürch S., Schürch D., Curstedt T., Robertson B. Surface activity of lipid extract surfactant in relation to film area compression and collapse. J Appl Physiol (1985) 1994 Aug;77(2):974–986. doi: 10.1152/jappl.1994.77.2.974. [DOI] [PubMed] [Google Scholar]
  14. Träuble H., Eibl H., Sawada H. Respiration--a critical phenomenon? Lipid phase transitions in the lung alveolar surfactant. Naturwissenschaften. 1974 Aug;61(8):344–354. doi: 10.1007/BF00600300. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES