Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3189–3196. doi: 10.1016/S0006-3495(99)77149-3

Molecular dissection of N2B cardiac titin's extensibility.

K Trombitás 1, A Freiburg 1, T Centner 1, S Labeit 1, H Granzier 1
PMCID: PMC1300589  PMID: 10585940

Abstract

Titin is a giant filamentous polypeptide of multidomain construction spanning between the Z- and M-lines of the cardiac muscle sarcomere. Extension of the I-band segment of titin gives rise to a force that underlies part of the diastolic force of cardiac muscle. Titin's force arises from its extensible I-band region, which consists of two main segment types: serially linked immunoglobulin-like domains (tandem Ig segments) interrupted with a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich segment called PEVK segment. In addition to these segments, the extensible region of cardiac titin also contains a unique 572-residue sequence that is part of the cardiac-specific N2B element. In this work, immunoelectron microscopy was used to study the molecular origin of the in vivo extensibility of the I-band region of cardiac titin. The extensibility of the tandem Ig segments, the PEVK segment, and that of the unique N2B sequence were studied, using novel antibodies against Ig domains that flank these segments. Results show that only the tandem Igs extend at sarcomere lengths (SLs) below approximately 2.0 microm, and that, at longer SLs, the PEVK and the unique sequence extend as well. At the longest SLs that may be reached under physiological conditions ( approximately 2.3 microm), the PEVK segment length is approximately 50 nm whereas the unique N2B sequence is approximately 80 nm long. Thus, the unique sequence provides additional extensibility to cardiac titins and this may eliminate the necessity for unfolding of Ig domains under physiological conditions. In summary, this work provides direct evidence that the three main molecular subdomains of N2B titin are all extensible and that their contribution to extensibility decreases in the order of tandem Igs, unique N2B sequence, and PEVK segment.

Full Text

The Full Text of this article is available as a PDF (562.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fürst D. O., Osborn M., Nave R., Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988 May;106(5):1563–1572. doi: 10.1083/jcb.106.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gautel M., Lehtonen E., Pietruschka F. Assembly of the cardiac I-band region of titin/connectin: expression of the cardiac-specific regions and their structural relation to the elastic segments. J Muscle Res Cell Motil. 1996 Aug;17(4):449–461. doi: 10.1007/BF00123361. [DOI] [PubMed] [Google Scholar]
  3. Granzier H. L., Irving T. C. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995 Mar;68(3):1027–1044. doi: 10.1016/S0006-3495(95)80278-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Granzier H., Helmes M., Trombitás K. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J. 1996 Jan;70(1):430–442. doi: 10.1016/S0006-3495(96)79586-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greaser M. L., Sebestyen M. G., Fritz J. D., Wolff J. A. cDNA sequence of rabbit cardiac titin/connectin. Adv Biophys. 1996;33:13–25. [PubMed] [Google Scholar]
  6. Gregorio C. C., Granzier H., Sorimachi H., Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol. 1999 Feb;11(1):18–25. doi: 10.1016/s0955-0674(99)80003-9. [DOI] [PubMed] [Google Scholar]
  7. Grimm A. F., Grimm B. R., Lin H. L., Parshall R. F., Tichy A. M. Left ventricular shape-luminal pressure relationship. An open-chest study. Basic Res Cardiol. 1991 Jul-Aug;86(4):378–392. doi: 10.1007/BF02191534. [DOI] [PubMed] [Google Scholar]
  8. Grimm A. F., Lin H. L., Grimm B. R. Left ventricular free wall and intraventricular pressure-sarcomere length distributions. Am J Physiol. 1980 Jul;239(1):H101–H107. doi: 10.1152/ajpheart.1980.239.1.H101. [DOI] [PubMed] [Google Scholar]
  9. Helmes M., Trombitás K., Centner T., Kellermayer M., Labeit S., Linke W. A., Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Circ Res. 1999 Jun 11;84(11):1339–1352. doi: 10.1161/01.res.84.11.1339. [DOI] [PubMed] [Google Scholar]
  10. Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
  11. Labeit S., Kolmerer B., Linke W. A. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res. 1997 Feb;80(2):290–294. doi: 10.1161/01.res.80.2.290. [DOI] [PubMed] [Google Scholar]
  12. Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995 Oct 13;270(5234):293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  13. Linke W. A., Ivemeyer M., Mundel P., Stockmeier M. R., Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052–8057. doi: 10.1073/pnas.95.14.8052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linke W. A., Ivemeyer M., Olivieri N., Kolmerer B., Rüegg J. C., Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol. 1996 Aug 9;261(1):62–71. doi: 10.1006/jmbi.1996.0441. [DOI] [PubMed] [Google Scholar]
  15. Linke W. A., Rudy D. E., Centner T., Gautel M., Witt C., Labeit S., Gregorio C. C. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol. 1999 Aug 9;146(3):631–644. doi: 10.1083/jcb.146.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Linke W. A., Stockmeier M. R., Ivemeyer M., Hosser H., Mundel P. Characterizing titin's I-band Ig domain region as an entropic spring. J Cell Sci. 1998 Jun;111(Pt 11):1567–1574. doi: 10.1242/jcs.111.11.1567. [DOI] [PubMed] [Google Scholar]
  17. MacKenna D. A., Omens J. H., Covell J. W. Left ventricular perimysial collagen fibers uncoil rather than stretch during diastolic filling. Basic Res Cardiol. 1996 Mar-Apr;91(2):111–122. doi: 10.1007/BF00799683. [DOI] [PubMed] [Google Scholar]
  18. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J. 1997 Apr;11(5):341–345. doi: 10.1096/fasebj.11.5.9141500. [DOI] [PubMed] [Google Scholar]
  19. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  20. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  21. Sebestyén M. G., Wolff J. A., Greaser M. L. Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci. 1995 Sep;108(Pt 9):3029–3037. doi: 10.1242/jcs.108.9.3029. [DOI] [PubMed] [Google Scholar]
  22. Siu B. L., Niimura H., Osborne J. A., Fatkin D., MacRae C., Solomon S., Benson D. W., Seidman J. G., Seidman C. E. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation. 1999 Mar 2;99(8):1022–1026. doi: 10.1161/01.cir.99.8.1022. [DOI] [PubMed] [Google Scholar]
  23. Trinick J. Titin as a scaffold and spring. Cytoskeleton. Curr Biol. 1996 Mar 1;6(3):258–260. doi: 10.1016/s0960-9822(02)00472-4. [DOI] [PubMed] [Google Scholar]
  24. Trombitás K., Baatsen P. H., Kellermayer M. S., Pollack G. H. Nature and origin of gap filaments in striated muscle. J Cell Sci. 1991 Dec;100(Pt 4):809–814. doi: 10.1242/jcs.100.4.809. [DOI] [PubMed] [Google Scholar]
  25. Trombitás K., Greaser M., Labeit S., Jin J. P., Kellermayer M., Helmes M., Granzier H. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol. 1998 Feb 23;140(4):853–859. doi: 10.1083/jcb.140.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Trombitás K., Jin J. P., Granzier H. The mechanically active domain of titin in cardiac muscle. Circ Res. 1995 Oct;77(4):856–861. doi: 10.1161/01.res.77.4.856. [DOI] [PubMed] [Google Scholar]
  27. Tskhovrebova L., Trinick J., Sleep J. A., Simmons R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997 May 15;387(6630):308–312. doi: 10.1038/387308a0. [DOI] [PubMed] [Google Scholar]
  28. Witt C. C., Olivieri N., Centner T., Kolmerer B., Millevoi S., Morell J., Labeit D., Labeit S., Jockusch H., Pastore A. A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates. J Struct Biol. 1998;122(1-2):206–215. doi: 10.1006/jsbi.1998.3993. [DOI] [PubMed] [Google Scholar]
  29. Wolska B. M., Solaro R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol. 1996 Sep;271(3 Pt 2):H1250–H1255. doi: 10.1152/ajpheart.1996.271.3.H1250. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES