Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3252–3255. doi: 10.1016/S0006-3495(99)77156-0

Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects.

I Rouzina 1, V A Bloomfield 1
PMCID: PMC1300596  PMID: 10585947

Abstract

The stability of a DNA double helix of any particular sequence is conventionally estimated as the average of the stabilities of the 10 different nearest-neighbor (NN) base pair doublets that it contains. Therefore, much effort has been devoted to the experimental characterization and tabulation of the enthalpy, entropy, and free energy of melting for each of the NN doublets. Although data from different research groups generally agree for the NN free energies and melting temperatures, there are major disagreements for the enthalpies and entropies. The largest differences are between the parameters obtained on oligomeric relative to polymeric DNA. This disagreement interferes with the practical application of NN thermodynamic parameters. It also raises doubts regarding several fundamental assumptions about DNA melting, such as the absence of longer range interactions, the length dependence of DNA melting parameters per base pair, the applicability of polyelectrolyte theory to the description of salt effects on oligomers, and the purely enthalpic difference between NN doublets. Here we show that if one takes into account the significant heat capacity increase associated with DNA melting, all of the above assumptions are self-consistently reconciled with experiment.

Full Text

The Full Text of this article is available as a PDF (61.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake R. D., Delcourt S. G. Thermal stability of DNA. Nucleic Acids Res. 1998 Jul 15;26(14):3323–3332. doi: 10.1093/nar/26.14.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delcourt S. G., Blake R. D. Stacking energies in DNA. J Biol Chem. 1991 Aug 15;266(23):15160–15169. [PubMed] [Google Scholar]
  4. Doktycz M. J., Goldstein R. F., Paner T. M., Gallo F. J., Benight A. S. Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA. Biopolymers. 1992 Jul;32(7):849–864. doi: 10.1002/bip.360320712. [DOI] [PubMed] [Google Scholar]
  5. Gruenwedel D. W. Salt effects on the denaturation of DNA. 3. A calorimetric investigation of the transition enthalpy of calf thymus DNA in Na2SO4 solutions of varying ionic strength. Biochim Biophys Acta. 1974 Feb 27;340(1):16–30. doi: 10.1016/0005-2787(74)90170-1. [DOI] [PubMed] [Google Scholar]
  6. Owczarzy R., Vallone P. M., Gallo F. J., Paner T. M., Lane M. J., Benight A. S. Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers. 1997;44(3):217–239. doi: 10.1002/(SICI)1097-0282(1997)44:3<217::AID-BIP3>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  7. Plum G. E., Grollman A. P., Johnson F., Breslauer K. J. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry. 1995 Dec 12;34(49):16148–16160. doi: 10.1021/bi00049a030. [DOI] [PubMed] [Google Scholar]
  8. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  9. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sugimoto N., Nakano S., Yoneyama M., Honda K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 1996 Nov 15;24(22):4501–4505. doi: 10.1093/nar/24.22.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vologodskii A. V., Amirikyan B. R., Lyubchenko Y. L., Frank-Kamenetskii M. D. Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J Biomol Struct Dyn. 1984 Aug;2(1):131–148. doi: 10.1080/07391102.1984.10507552. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES