Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3394–3406. doi: 10.1016/S0006-3495(99)77171-7

Analysis of competition binding between soluble and membrane-bound ligands for cell surface receptors.

P Li 1, P Selvaraj 1, C Zhu 1
PMCID: PMC1300611  PMID: 10585962

Abstract

Binding of the Fc portion of IgG coated on targets to Fcgamma receptors (e.g., CD16) expressed on leukocytes (i.e., 2D binding) is an initiating step for immune responses such as phagocytosis or antibody-dependent cellular cytotoxicity. In vivo, circulating leukocytes are exposed to plasma IgG. The competition from soluble IgG (i.e., 3D binding) may affect the 2D binding. Many cell surface receptors, CD16 included, have soluble counterparts. While their physiological significance is not clear, receptor-based competitive inhibition therapy, in which soluble receptors, ligands, and their analogs are employed to compete with surface-bound receptors and ligands to prevent unwanted adhesion, is widely used to treat various diseases. To provide a quantitative basis for design of these therapeutic approaches, we developed a mathematical model for 2D and 3D competition binding. The model relates cell-surface adhesion (in the presence and absence of dislodging forces) to the concentration of the soluble competitor, the densities of the surface-bound receptors and ligands, as well as the binding affinities of the 2D and 3D interactions. Binding of CD16-expressing cells to an IgG-coated surface in the presence of a soluble competitor (IgG or anti-CD16 antibody) was quantified by a centrifugation assay. The agreement between experiment and theory supports the validity of the model, which could be useful in predicting the efficacy of the competitor.

Full Text

The Full Text of this article is available as a PDF (168.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allansmith M., McClellan B. H., Butterworth M., Maloney J. R. The development of immunoglobulin levels in man. J Pediatr. 1968 Feb;72(2):276–290. doi: 10.1016/s0022-3476(68)80324-5. [DOI] [PubMed] [Google Scholar]
  2. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bikoue A., George F., Poncelet P., Mutin M., Janossy G., Sampol J. Quantitative analysis of leukocyte membrane antigen expression: normal adult values. Cytometry. 1996 Jun 15;26(2):137–147. doi: 10.1002/(SICI)1097-0320(19960615)26:2<137::AID-CYTO7>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  4. Capon D. J., Chamow S. M., Mordenti J., Marsters S. A., Gregory T., Mitsuya H., Byrn R. A., Lucas C., Wurm F. M., Groopman J. E. Designing CD4 immunoadhesins for AIDS therapy. Nature. 1989 Feb 9;337(6207):525–531. doi: 10.1038/337525a0. [DOI] [PubMed] [Google Scholar]
  5. Casasnovas J. M., Springer T. A. Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem. 1995 Jun 2;270(22):13216–13224. doi: 10.1074/jbc.270.22.13216. [DOI] [PubMed] [Google Scholar]
  6. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  7. Chesla S. E., Selvaraj P., Zhu C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J. 1998 Sep;75(3):1553–1572. doi: 10.1016/S0006-3495(98)74074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chong B. H., Murray B., Berndt M. C., Dunlop L. C., Brighton T., Chesterman C. N. Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood. 1994 Mar 15;83(6):1535–1541. [PubMed] [Google Scholar]
  9. Chorev M., Dresner-Pollak R., Eshel Y., Rosenblatt M. Approach to discovering novel therapeutic agents for osteoporosis based on integrin receptor blockade. Biopolymers. 1995;37(6):367–375. doi: 10.1002/bip.360370603. [DOI] [PubMed] [Google Scholar]
  10. Clarkson S. B., Bussel J. B., Kimberly R. P., Valinsky J. E., Nachman R. L., Unkeless J. C. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med. 1986 May 8;314(19):1236–1239. doi: 10.1056/NEJM198605083141907. [DOI] [PubMed] [Google Scholar]
  11. Crandall I., Collins W. E., Gysin J., Sherman I. W. Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4703–4707. doi: 10.1073/pnas.90.10.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dresner-Pollak R., Rosenblatt M. Blockade of osteoclast-mediated bone resorption through occupancy of the integrin receptor: a potential approach to the therapy of osteoporosis. J Cell Biochem. 1994 Nov;56(3):323–330. doi: 10.1002/jcb.240560308. [DOI] [PubMed] [Google Scholar]
  13. Dunlop L. C., Skinner M. P., Bendall L. J., Favaloro E. J., Castaldi P. A., Gorman J. J., Gamble J. R., Vadas M. A., Berndt M. C. Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J Exp Med. 1992 Apr 1;175(4):1147–1150. doi: 10.1084/jem.175.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edberg J. C., Kimberly R. P. Cell type-specific glycoforms of Fc gamma RIIIa (CD16): differential ligand binding. J Immunol. 1997 Oct 15;159(8):3849–3857. [PubMed] [Google Scholar]
  15. Heaney M. L., Golde D. W. Soluble receptors in human disease. J Leukoc Biol. 1998 Aug;64(2):135–146. doi: 10.1002/jlb.64.2.135. [DOI] [PubMed] [Google Scholar]
  16. Hibbs M. L., Selvaraj P., Carpén O., Springer T. A., Kuster H., Jouvin M. H., Kinet J. P. Mechanisms for regulating expression of membrane isoforms of Fc gamma RIII (CD16). Science. 1989 Dec 22;246(4937):1608–1611. doi: 10.1126/science.2531918. [DOI] [PubMed] [Google Scholar]
  17. Jameson S. C., Bevan M. J. T cell receptor antagonists and partial agonists. Immunity. 1995 Jan;2(1):1–11. doi: 10.1016/1074-7613(95)90074-8. [DOI] [PubMed] [Google Scholar]
  18. Kalinke U., Krebber A., Krebber C., Bucher E., Plückthun A., Zinkernagel R. M., Hengartner H. Monovalent single-chain Fv fragments and bivalent miniantibodies bound to vesicular stomatitis virus protect against lethal infection. Eur J Immunol. 1996 Dec;26(12):2801–2806. doi: 10.1002/eji.1830261202. [DOI] [PubMed] [Google Scholar]
  19. Katayama M., Handa M., Araki Y., Ambo H., Kawai Y., Watanabe K., Ikeda Y. Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br J Haematol. 1993 Aug;84(4):702–710. doi: 10.1111/j.1365-2141.1993.tb03149.x. [DOI] [PubMed] [Google Scholar]
  20. Kotzé H. F., Badenhorst P. N., Lamprecht S., Meiring M., Van Wyk V., Nuyts K., Stassen J. M., Vermylen J., Deckmyn H. Prolonged inhibition of acute arterial thrombosis by high dosing of a monoclonal anti-platelet glycoprotein IIb/IIIa antibody in a baboon model. Thromb Haemost. 1995 Aug;74(2):751–757. [PubMed] [Google Scholar]
  21. Lanier L. L., Yu G., Phillips J. H. Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature. 1989 Dec 14;342(6251):803–805. doi: 10.1038/342803a0. [DOI] [PubMed] [Google Scholar]
  22. Letourneur O., Kennedy I. C., Brini A. T., Ortaldo J. R., O'Shea J. J., Kinet J. P. Characterization of the family of dimers associated with Fc receptors (Fc epsilon RI and Fc gamma RIII). J Immunol. 1991 Oct 15;147(8):2652–2656. [PubMed] [Google Scholar]
  23. Long M., Goldsmith H. L., Tees D. F., Zhu C. Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor-ligand bonds. Biophys J. 1999 Feb;76(2):1112–1128. doi: 10.1016/S0006-3495(99)77276-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin S., Casasnovas J. M., Staunton D. E., Springer T. A. Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J Virol. 1993 Jun;67(6):3561–3568. doi: 10.1128/jvi.67.6.3561-3568.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mathiot C., Teillaud J. L., Elmalek M., Mosseri V., Euller-Ziegler L., Daragon A., Grosbois B., Michaux J. L., Facon T., Bernard J. F. Correlation between soluble serum CD16 (sCD16) levels and disease stage in patients with multiple myeloma. J Clin Immunol. 1993 Jan;13(1):41–48. doi: 10.1007/BF00920634. [DOI] [PubMed] [Google Scholar]
  26. McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mehta P., Cummings R. D., McEver R. P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem. 1998 Dec 4;273(49):32506–32513. doi: 10.1074/jbc.273.49.32506. [DOI] [PubMed] [Google Scholar]
  28. Nagarajan S., Chesla S., Cobern L., Anderson P., Zhu C., Selvaraj P. Ligand binding and phagocytosis by CD16 (Fc gamma receptor III) isoforms. Phagocytic signaling by associated zeta and gamma subunits in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 27;270(43):25762–25770. doi: 10.1074/jbc.270.43.25762. [DOI] [PubMed] [Google Scholar]
  29. O'Shea J. J., Weissman A. M., Kennedy I. C., Ortaldo J. R. Engagement of the natural killer cell IgG Fc receptor results in tyrosine phosphorylation of the zeta chain. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):350–354. doi: 10.1073/pnas.88.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Piper J. W., Swerlick R. A., Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J. 1998 Jan;74(1):492–513. doi: 10.1016/S0006-3495(98)77807-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scallon B. J., Scigliano E., Freedman V. H., Miedel M. C., Pan Y. C., Unkeless J. C., Kochan J. P. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5079–5083. doi: 10.1073/pnas.86.13.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Selvaraj P., Carpén O., Hibbs M. L., Springer T. A. Natural killer cell and granulocyte Fc gamma receptor III (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989 Nov 15;143(10):3283–3288. [PubMed] [Google Scholar]
  33. Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature. 1988 Jun 9;333(6173):565–567. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  34. Serke S., van Lessen A., Huhn D. Quantitative fluorescence flow cytometry: a comparison of the three techniques for direct and indirect immunofluorescence. Cytometry. 1998 Oct 1;33(2):179–187. doi: 10.1002/(sici)1097-0320(19981001)33:2<179::aid-cyto12>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  35. Ushiyama S., Laue T. M., Moore K. L., Erickson H. P., McEver R. P. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J Biol Chem. 1993 Jul 15;268(20):15229–15237. [PubMed] [Google Scholar]
  36. Wallace P. K., Keler T., Guyre P. M., Fanger M. W. Fc gamma RI blockade and modulation for immunotherapy. Cancer Immunol Immunother. 1997 Nov-Dec;45(3-4):137–141. doi: 10.1007/s002620050416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES