Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):1–12. doi: 10.1016/S0006-3495(00)76568-4

Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records.

A M Keleshian 1, R O Edeson 1, G J Liu 1, B W Madsen 1
PMCID: PMC1300613  PMID: 10620269

Abstract

It is often assumed that ion channels in cell membrane patches gate independently. However, in the present study nicotinic receptor patch clamp data obtained in cell-attached mode from embryonic chick myotubes suggest that the distribution of steady-state probabilities for conductance multiples arising from concurrent channel openings may not be binomial. In patches where up to four active channels were observed, the probabilities of two or more concurrent openings were greater than expected, suggesting positive cooperativity. For the case of two active channels, we extended the analysis by assuming that 1) individual receptors (not necessarily identical) could be modeled by a five-state (three closed and two open) continuous-time Markov process with equal agonist binding affinity at two recognition sites, and 2) cooperativity between channels could occur through instantaneous changes in specific transition rates in one channel following a change in conductance state of the neighboring channel. This allowed calculation of open and closed sojourn time density functions for either channel conditional on the neighboring channel being open or closed. Simulation studies of two channel systems, with channels being either independent or cooperative, nonidentical or identical, supported the discriminatory power of the optimization algorithm. The experimental results suggested that individual acetylcholine receptors were kinetically identical and that the open state of one channel increased the probability of opening of its neighbor.

Full Text

The Full Text of this article is available as a PDF (140.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball F. G., Sansom M. S. Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc R Soc Lond B Biol Sci. 1989 May 22;236(1285):385–416. doi: 10.1098/rspb.1989.0029. [DOI] [PubMed] [Google Scholar]
  2. Berry R. M., Edmonds D. T. Correlated ion flux through parallel pores: application to channel subconductance states. J Membr Biol. 1993 Apr;133(1):77–84. doi: 10.1007/BF00231879. [DOI] [PubMed] [Google Scholar]
  3. Blunck R., Kirst U., Riessner T., Hansen U. How powerful is the dwell-time analysis of multichannel records? J Membr Biol. 1998 Sep 1;165(1):19–35. doi: 10.1007/s002329900417. [DOI] [PubMed] [Google Scholar]
  4. Chang H., Kurokawa K. Reliability of maximum number of simultaneously open channels as an estimator for the number of channels in single-channel recordings. J Theor Biol. 1995 Mar 7;173(1):61–65. doi: 10.1006/jtbi.1995.0043. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. H., DeHaan R. L. Multiple-channel conductance states and voltage regulation of embryonic chick cardiac gap junctions. J Membr Biol. 1992 Apr;127(2):95–111. doi: 10.1007/BF00233282. [DOI] [PubMed] [Google Scholar]
  6. Chung S. H., Kennedy R. A. Coupled Markov chain model: characterization of membrane channel currents with multiple conductance sublevels as partially coupled elementary pores. Math Biosci. 1996 Apr 15;133(2):111–137. doi: 10.1016/0025-5564(95)00084-4. [DOI] [PubMed] [Google Scholar]
  7. Chung S. H., Moore J. B., Xia L. G., Premkumar L. S., Gage P. W. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos Trans R Soc Lond B Biol Sci. 1990 Sep 29;329(1254):265–285. doi: 10.1098/rstb.1990.0170. [DOI] [PubMed] [Google Scholar]
  8. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  9. Draber S., Schultze R., Hansen U. P. Cooperative behavior of K+ channels in the tonoplast of Chara corallina. Biophys J. 1993 Oct;65(4):1553–1559. doi: 10.1016/S0006-3495(93)81194-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dunant Y., Garcia-Segura L. M., Muller D., Parducz A. Momentary alteration of the postsynaptic membrane during transmission of a single nerve impulse. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1717–1720. doi: 10.1073/pnas.86.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gage P. W., McKinnon D. Effects of pentobarbitone on acetylcholine-activated channels in mammalian muscle. Br J Pharmacol. 1985 May;85(1):229–235. doi: 10.1111/j.1476-5381.1985.tb08851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayman K. A., Ashley R. H. Structural features of a multisubstate cardiac mitoplast anion channel: inferences from single channel recording. J Membr Biol. 1993 Nov;136(2):191–197. doi: 10.1007/BF02505763. [DOI] [PubMed] [Google Scholar]
  13. Horn R. Estimating the number of channels in patch recordings. Biophys J. 1991 Aug;60(2):433–439. doi: 10.1016/S0006-3495(91)82069-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Imredy J. P., Yue D. T. Submicroscopic Ca2+ diffusion mediates inhibitory coupling between individual Ca2+ channels. Neuron. 1992 Aug;9(2):197–207. doi: 10.1016/0896-6273(92)90159-b. [DOI] [PubMed] [Google Scholar]
  15. Iwasa K., Ehrenstein G., Moran N., Jia M. Evidence for interactions between batrachotoxin-modified channels in hybrid neuroblastoma cells. Biophys J. 1986 Sep;50(3):531–537. doi: 10.1016/S0006-3495(86)83491-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keleshian A. M., Yeo G. F., Edeson R. O., Madsen B. W. Superposition properties of interacting ion channels. Biophys J. 1994 Aug;67(2):634–640. doi: 10.1016/S0006-3495(94)80523-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klein S., Timmer J., Honerkamp J. Analysis of multichannel patch clamp recordings by hidden Markov models. Biometrics. 1997 Sep;53(3):870–884. [PubMed] [Google Scholar]
  18. Krouse M. E., Schneider G. T., Gage P. W. A large anion-selective channel has seven conductance levels. Nature. 1986 Jan 2;319(6048):58–60. doi: 10.1038/319058a0. [DOI] [PubMed] [Google Scholar]
  19. Le Dain A. C., Madsen B. W., Edeson R. O. Naltrexone modulation of nicotinic acetylcholine receptor activity. J Pharmacol Exp Ther. 1991 Aug;258(2):551–558. [PubMed] [Google Scholar]
  20. Liu G. J., Madsen B. W. Biphasic effect of pentobarbitone on chick myotube nicotinic receptor channel kinetics. Br J Pharmacol. 1996 Jul;118(6):1385–1388. doi: 10.1111/j.1476-5381.1996.tb15549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu Y., Dilger J. P. Application of the one- and two-dimensional Ising models to studies of cooperativity between ion channels. Biophys J. 1993 Jan;64(1):26–35. doi: 10.1016/S0006-3495(93)81337-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludewig U., Pusch M., Jentsch T. J. Independent gating of single pores in CLC-0 chloride channels. Biophys J. 1997 Aug;73(2):789–797. doi: 10.1016/S0006-3495(97)78111-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manivannan K., Mathias R. T., Gudowska-Nowak E. Description of interacting channel gating using a stochastic Markovian model. Bull Math Biol. 1996 Jan;58(1):141–174. doi: 10.1007/BF02458286. [DOI] [PubMed] [Google Scholar]
  24. Marx S. O., Ondrias K., Marks A. R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors) Science. 1998 Aug 7;281(5378):818–821. doi: 10.1126/science.281.5378.818. [DOI] [PubMed] [Google Scholar]
  25. McManus O. B., Magleby K. L. Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle. J Physiol. 1988 Aug;402:79–120. doi: 10.1113/jphysiol.1988.sp017195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morier N., Sauvé R. Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum. Biophys J. 1994 Aug;67(2):590–602. doi: 10.1016/S0006-3495(94)80519-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neher E., Sakmann B., Steinbach J. H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 1978 Jul 18;375(2):219–228. doi: 10.1007/BF00584247. [DOI] [PubMed] [Google Scholar]
  28. Queyroy A., Verdetti J. Cooperative gating of chloride channel subunits in endothelial cells. Biochim Biophys Acta. 1992 Jul 27;1108(2):159–168. doi: 10.1016/0005-2736(92)90021-d. [DOI] [PubMed] [Google Scholar]
  29. Rösler K. M., Casanova G. A., Hess C. W., Meier C., Ludin H. P. Blasenstörungen bei jungen Erwachsenen mit Myelomeningocele: Ergebnisse urodynamisch-elektromyographischer Untersuchungen. Schweiz Med Wochenschr. 1990 Jul 28;120(30):1091–1097. [PubMed] [Google Scholar]
  30. Schindler H., Spillecke F., Neumann E. Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6222–6226. doi: 10.1073/pnas.81.19.6222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Uteshev V. The binomial distribution and the evidence for independent action of ion channels. J Theor Biol. 1993 Aug 21;163(4):485–489. doi: 10.1006/jtbi.1993.1133. [DOI] [PubMed] [Google Scholar]
  32. Yeo G. F., Edeson R. O., Milne R. K., Madsen B. W. Superposition properties of independent ion channels. Proc R Soc Lond B Biol Sci. 1989 Nov 22;238(1291):155–170. doi: 10.1098/rspb.1989.0073. [DOI] [PubMed] [Google Scholar]
  33. Yeramian E., Trautmann A., Claverie P. Acetylcholine receptors are not functionally independent. Biophys J. 1986 Aug;50(2):253–263. doi: 10.1016/S0006-3495(86)83459-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Young S. H., Poo M. M. Topographical rearrangement of acetylcholine receptors alters channel kinetics. Nature. 1983 Jul 14;304(5922):161–163. doi: 10.1038/304161a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES