Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):47–54. doi: 10.1016/S0006-3495(00)76571-4

Vascular endothelial cells minimize the total force on their nuclei.

A L Hazel 1, T J Pedley 1
PMCID: PMC1300616  PMID: 10620272

Abstract

The vascular endothelium is a cellular monolayer that lines the arterial walls. It plays a vital role in the initiation and development of atherosclerosis, an occlusive arterial disease responsible for 50% of deaths in the Western world. The focal nature of the disease suggests that hemodynamic forces are an important factor in its pathogenesis. This has led to the investigation of the effects of mechanical forces on the endothelial cells themselves. It has been found that endothelial cells do respond to stresses induced by the flowing blood; in particular, they elongate and align with an imposed flow direction. In this paper, we calculate the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus, by a uniform shear flow. It is found that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the hump is aligned with the flow. Furthermore, for a hump of fixed volume, there is a specific aspect ratio combination that results in the least total force upon the hump, (0.38:2.2:1.0; height:length:width). This is approximately the same as the average aspect ratio taken up by the cell nuclei in vivo (0.27:2.23:1.0). It is possible, therefore, that the cells respond to the flow in such a way as to minimize the total force on their nuclei.

Full Text

The Full Text of this article is available as a PDF (99.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbee K. A., Davies P. F., Lal R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res. 1994 Jan;74(1):163–171. doi: 10.1161/01.res.74.1.163. [DOI] [PubMed] [Google Scholar]
  2. Barbee K. A., Mundel T., Lal R., Davies P. F. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol. 1995 Apr;268(4 Pt 2):H1765–H1772. doi: 10.1152/ajpheart.1995.268.4.H1765. [DOI] [PubMed] [Google Scholar]
  3. Basmadjian D. The hemodynamic forces acting on thrombi, from incipient attachment of single cells to maturity and embolization. J Biomech. 1984;17(4):287–298. doi: 10.1016/0021-9290(84)90139-8. [DOI] [PubMed] [Google Scholar]
  4. Caro C. G., Fitz-Gerald J. M., Schroter R. C. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971 Feb 16;177(1046):109–159. doi: 10.1098/rspb.1971.0019. [DOI] [PubMed] [Google Scholar]
  5. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies P. F., Mundel T., Barbee K. A. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995 Dec;28(12):1553–1560. doi: 10.1016/0021-9290(95)00102-6. [DOI] [PubMed] [Google Scholar]
  7. Davies P. F., Remuzzi A., Gordon E. J., Dewey C. F., Jr, Gimbrone M. A., Jr Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2114–2117. doi: 10.1073/pnas.83.7.2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dewey C. F., Jr, Bussolari S. R., Gimbrone M. A., Jr, Davies P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981 Aug;103(3):177–185. doi: 10.1115/1.3138276. [DOI] [PubMed] [Google Scholar]
  9. Flaherty J. T., Pierce J. E., Ferrans V. J., Patel D. J., Tucker W. K., Fry D. L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res. 1972 Jan;30(1):23–33. doi: 10.1161/01.res.30.1.23. [DOI] [PubMed] [Google Scholar]
  10. Friedman M. H., Fry D. L. Arterial permeability dynamics and vascular disease. Atherosclerosis. 1993 Dec;104(1-2):189–194. doi: 10.1016/0021-9150(93)90190-6. [DOI] [PubMed] [Google Scholar]
  11. Fry D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968 Feb;22(2):165–197. doi: 10.1161/01.res.22.2.165. [DOI] [PubMed] [Google Scholar]
  12. Fung Y. C., Liu S. Q. Elementary mechanics of the endothelium of blood vessels. J Biomech Eng. 1993 Feb;115(1):1–12. doi: 10.1115/1.2895465. [DOI] [PubMed] [Google Scholar]
  13. Gaver D. P., 3rd, Kute S. M. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys J. 1998 Aug;75(2):721–733. doi: 10.1016/S0006-3495(98)77562-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herman I. M., Brant A. M., Warty V. S., Bonaccorso J., Klein E. C., Kormos R. L., Borovetz H. S. Hemodynamics and the vascular endothelial cytoskeleton. J Cell Biol. 1987 Jul;105(1):291–302. doi: 10.1083/jcb.105.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ingber D. E. The architecture of life. Sci Am. 1998 Jan;278(1):48–57. doi: 10.1038/scientificamerican0198-48. [DOI] [PubMed] [Google Scholar]
  16. Ku D. N., Giddens D. P., Zarins C. K., Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985 May-Jun;5(3):293–302. doi: 10.1161/01.atv.5.3.293. [DOI] [PubMed] [Google Scholar]
  17. Lang F., Busch G. L., Ritter M., Völkl H., Waldegger S., Gulbins E., Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998 Jan;78(1):247–306. doi: 10.1152/physrev.1998.78.1.247. [DOI] [PubMed] [Google Scholar]
  18. Levesque M. J., Nerem R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985 Nov;107(4):341–347. doi: 10.1115/1.3138567. [DOI] [PubMed] [Google Scholar]
  19. Malek A. M., Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci. 1996 Apr;109(Pt 4):713–726. doi: 10.1242/jcs.109.4.713. [DOI] [PubMed] [Google Scholar]
  20. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  21. Satcher R. L., Jr, Bussolari S. R., Gimbrone M. A., Jr, Dewey C. F., Jr The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J Biomech Eng. 1992 Aug;114(3):309–316. doi: 10.1115/1.2891388. [DOI] [PubMed] [Google Scholar]
  22. Weinbaum S., Tzeghai G., Ganatos P., Pfeffer R., Chien S. Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am J Physiol. 1985 Jun;248(6 Pt 2):H945–H960. doi: 10.1152/ajpheart.1985.248.6.H945. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES